Translation, rotation and scale invariant pattern recognition using spectral analysis and hybrid genetic neural-fuzzy networks

Lee, S.-K.; Jang, D.

Abstract
A two dimensional image recognition method using spectral analysis and hybrid network classifiers was developed. The feature vectors using spectral analysis on normalized centroidal distance sequences of each image were extracted. The hybrid network classifiers using the advantages of conventional methods which are gradient-descent-searching backpropagation network (BPN), global searching genetic algorithm (GA), and fuzzy c-means algorithm (FCMA) were developed. The proposed method is applied to the recognition of aircraft, letters (Arabic numerals and English alphabet) and machine tools. The experimental results show that the proposed method has a higher accuracy, averaging 3.2% than BPN at a noise rate of 13 dB-25 dB, and the training times can be shortened by half of BPN while maintaining the same performance. Copyright © 1996 Elsevier Science Ltd.

References
[1] Torras, C.
[4] Haralick, R.M., Shapiro, L.G.
[5] Horn, B.K.P.

[6] Lenz, R.
Group invariant pattern recognition

A hierarchical multiple-view approach to three-dimensional object recognition

An experimental comparison of autoregressive and Fourier-based descriptors in 2D shape classification

[9] Belkasim, S.O., Shridhar, M., Ahmadi, M.
Pattern recognition with moment invariant: A comparative study and new results

[10] Prokop, R.J., Reeves, A.P.
A survey of moment-based techniques for unoccluded object representation and recognition

Shape discrimination using fourier descriptors

Application of affine invariant Fourier descriptors to recognition of 3D objects

A bivariate autoregressive modeling technique for analysis and classification of planar shapes

[14] Sekita, I., Kurita, T., Otsu, N.
Complex autoregressive model for shape recognition
Scale, and orientation invariant generalized hough transform - A new approach

Translation, rotation, and scale invariant pattern recognition by high-order neural networks
and moment classifiers

(1992) Digital Image Processing,
Addison-Wesley, Reading, MA

[18] Freeman, J.A., Skapura, D.M.
(1991) Neural Networks; Algorithms, Application, and Programming Techniques,
Addison-Wesley, Reading, MA

[19] Huang, C.-C., Huang, Y.-F.
Bounds on the numbers of hidden neuron in multilayer perceptrons

[20] Maniezzo, V.
Genetic evolution of the topology and weight distribution of neural networks

[21] Janson, D.J., Frenzel, J.F.
Training product unit neural networks with genetic algorithms

[22] Kwan, H.K., Cai, Y.
A fuzzy neural network and its application to pattern recognition,
IEEE Transactions on Fuzzy Systems, volume 2, issue 3, pages 185-193,

[23] Uevelle, V., Abe, S., Lan, M.-S.
A neural network based fuzzy classifier
 Multiple network fusion using fuzzy logic

[25] Anton, H.

[26] Oppenheim, A.V., Schafer, R.W.

[27] Burrus, C.S., Parks, T.W.

 An efficient three-dimensional aircraft recognition algorithm using normalized Fourier descriptors

[29] Lam, C.F., Kamins, D.
 Signature recognition through spectral analysis

[30] Cho, B.
 (1993) Rotation, Translation and Scale Invariant 2-D Object Recognition Using Spectral Analysis and a Hybrid Neural Network,
 PhD dissertation. Florida Institute of Technology, Melbourne

[31] Dayoff, J.E.

 (1989) Genetic Algorithm in Search, Optimization and Machine Learning,
 Addison-Wesley, Reading, MA

[33] Michalewicz, Z.

[34] Zimmermann, H.-J.

New algorithms for solving the fuzzy clustering problem

Authors’ affiliation
LSK; JD: Computer Vision Laboratory, Department of Industrial Engineering, Korea University, 1, 5-ka, Anam-Dong, Sungbuk-Ku, Seoul 136-701, South Korea.

Correspondence address
Lee S.-K.; Computer Vision Laboratory, Department of Industrial Engineering, Korea University, 1, 5-ka, Anam-Dong, Sungbuk-Ku, Seoul 136-701, South Korea.