Fuzzy neural networks and cognitive modeling

Gupta, M.M.; Musílek, P.

Abstract
Over the last two decades or so, several significant advances have been made in two distinct fields: neural networks and fuzzy systems. The theory of fuzzy systems provides a mathematical framework for capturing the uncertainties associated with human cognitive processes, such as thinking and reasoning, and for emulating corresponding perceptual and control processes. The paradigms of neural networks offer the complementary attributes of learning and adaptation, together with the innate efficiency of parallel operation. In this paper we explore fuzzy neural networks, the product of fusion of neural networks and fuzzy mathematics, which have potential for combining these mathematical tools into a single capsule. For their favorable properties, the fuzzy neural networks could be used in the development of systems with some sort of cognitive abilities. These cognitive systems would have the potential to recapitulate certain aspects of human cognition such as perception, memory, learning, and decision making.

References
1. Brown, M., Harris, C.
 Prentice Hall, New Jersey
 Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system
3. Donahoe, J.W.
 The necessity of neural networks
 J.W. Donahoe and V.P. Dorsel (Eds.), Elsevier, Amsterdam
4. Gupta, M. M.
 On the cognitive computing: Perspectives
 M.M. Gupta and T. Yamakawa (Eds.), North-Holland, Amsterdam
5. Gupta, M. M.
Fuzzy logic and neural networks

6. Hirota, Kaoru, Pedrycz, Witold
 OR/AND neuron in modeling fuzzy set connectives

7. Kaufmann, A., Gupta, M.M.
 North-Holland, New York

8. Kaufmann, A., Gupta, M.M.
 Van Nostrand Reinhold, New York

9. Klir, G.J., Yuan, B.
 Prentice Hall, New Jersey

10. Kwan, Hon Keung, Cai, Yaling
 Fuzzy neural network and its application to pattern recognition

12. Lin, C.-T., Lu, Y.-C.
 A neural fuzzy system with linguistic teaching signals

13. Mareš, M.
 CRC Press, Boca Raton, Florida

14. Musilek, P., Gupta, M.M.
 Dissimilarity based fuzzy logic neuron
 Fukuoka, Japan

15. Musilek, P., Gupta, M.M.
Fuzzy neural networks
N.K. Sinha and M.M. Gupta (Eds.), Academic Press

16. Nauck, D.
Beyond neuro-fuzzy: Perspectives and directions

17. Pedrycz, Witold, Rocha, Armando F.
Fuzzy-set based models of neurons and knowledge-based networks

18. Takagi, H.
Fusion technology of fuzzy theory and neural nets: Survey and future directions

19. Vuorimaa, P.
Fuzzy self-organizing map

20. Zadeh, L.A.
The concept of a linguistic variable and its application to approximate reasoning-I

Academic Press, Massachusetts

Authors’ affiliation
Intelligent Syst. Res. Laboratory, College of Engineering, University of Saskatchewan, Saskatoon, Sask. S7N 5A9, Canada