A dynamic neuro-fuzzy system configuration, stability, and fuzzy operational function

Ruan, X.

Abstract
This paper describes a dynamic neuro-fuzzy system (DNFS) with the operational functions of fuzzy logic. The neurons of the DNFS correspond to the elements in a certain pattern set, and the fuzzy relation between the patterns is stored in the DNFS as a weighting matrix of the DNFS that represents the connective strength between the neurons of the DNFS. The stability and the fuzzy operational function of DNFS are examined in this paper. The theoretical study on DNFS in this paper shows that a DNFS is stable and possesses a fuzzy clustering function that is equivalent to a fuzzy clustering operation based on a fuzzy equivalence relation. It can be concluded that a DNFS as a computational model of fuzzy logic supplies a new neural-network-based implementation of fuzzy clustering operations. © 1999 Elsevier Science B.V. All rights reserved.

References
7. He, X.G.
8. Hopfield, J.J.
 Neural networks and physical systems with emergent collective computational abilities

 Neural computation of decisions in optimization problems

10. Horikawa, S.I., Furuhashi, T., Uchikawa, Y.
 On fuzzy modeling using fuzzy neural networks with the backpropagation algorithm

11. Kandel, A.

 Neural network implementation of fuzzy logic

13. Kim, Y.S., Mitra, S.
 Comparative study of the performance of fuzzy ART-type clustering

14. Kosko, B.

15. Kwan, H. K.; Cai, Y.
 A fuzzy neural network and its application to pattern recognition
 (1994) IEEE Transactions on Fuzzy Systems, volume 2, issue 3, pages 185-193,

16. Langari, R., Wang, L.
 Fuzzy models, modular networks, and hybrid learning

17. Lin, C.C., Lee, C.G.S.
 Neural-network-based fuzzy logic control and decision systems

 associative memory

19. Ortega, R.
 Some remarks on adaptive neuro-fuzzy systems

20. Pal, S.K., Mitra, S.
 Multilayer preceptron, fuzzy sets, and classification

21. Pedrycz, W.
Fuzzy neural networks with reference neurons as pattern classifiers

22. Pedrycz, W.
Fuzzy neural networks and neurocomputations

23. Werbos, P.J.
Neurocontrol and fuzzy logic: Connections and designs
Seattle, WA, Werbos

24. Yager, R.R.
Implementing fuzzy logic controllers using a neural network framework

25. Zimmermann, H.J.

Author’ affiliation
RX: Automation Department, Beijing Polytechnic University, Beijing 100022, China

Correspondence address
Ruan X.; Automation Department, Beijing Polytechnic University, Beijing 100022, China