Application of fuzzy logic in engineering problems

Gad, A.; Farooq, M.

Abstract

In today's fast paced world of increasing and innovative new technology, fuzzy logic is a practical mathematical addition to classic Boolean logic. We can see its applications in many fields of science and engineering. This paper gives a general overview on many such applications to target tracking, pattern recognition, robotics, power systems, controller design, chemical engineering, biomedical engineering, vehicular technology, economy management as well as decision making, communications and networking, electronic engineering, civil engineering, sensor technology, and industry.

References

1. Zadeh, L. Fuzzy sets
 (1965) Information and Control, 8, pp. 338-353.
2. Zadeh, L.
 Fuzzy sets as a basis for a theory of possibility
 (1978) Fuzzy Sets and Systems,
3. Zadeh, L.
 Fuzzy sets and information granularity
 (1979) Advances in Fuzzy Set Theory and Applications, North-Holland
4. Passino, K., Yurkovich, S. Fuzzy Control
 (1998), Addison-Wesley
5. Civanlar, M., Trussell, H.
 Constructing membership functions using statistical data
 January
6. Lee, C.
 Fuzzy logic in control systems: Fuzzy logic controller, Parts I, II

7. Pedrycz, W.
 New York: Wiley

8. Wang, L.-X.
 Adaptive fuzzy systems and control Prentice-Hall, 1994

9. Mendel, J.
 Fuzzy logic systems for engineering: A tutorial

10. Klir, G., Yuan, B.
 Fuzzy sets and fuzzy logic: Theory and applications
 (1995), Prentice-Hall Inc., copyright

11. Bandemer, H., Gottwald, S.
 Fuzzy sets, fuzzy logic, and fuzzy methods with applications

12. Chen, C.

13. Cox, E.

14. Tao, C., Thompson, W., Taur, J.
 A fuzzy logic approach in multidimensional target tracking

15. Doyle, R., Harris, C.
 Multi-sensor data fusion for obstacle tracking using neuro-fuzzy estimation algorithms
 (1994) SPIE, 2233.

 A methodology for designing an optimum fuzzy tracker using genetic algorithms
17. Chan, K., Lee, V., Leung, H.
 Robust target tracking using a fuzzy filter

18. Meitzler, T., Arafeh, L.
 Fuzzy logic approach for computing the probability of target detection in cluttered environment

19. Hossam, O., Farooq, M., Quach, T.
 Fuzzy logic approach to data association
 (1996) SPIE,

20. Moore, C., Harris, C., Rogers, E.
 Fuzzy logic bases estimators and predictors for agile target tracking applications
 (1996) Int. J. Syst. Science,

21. Smith, J.
 A fuzzy logic multisensor association algorithm

22. Singh, R., Bailey, W.
 Fuzzy logic applications to multisensor-multitarget correlation
 (1997) IEEE Trans. on AES,

23. Chan, K., Lee, V., Leung, H.
 Radar tracking for air surveillance in stressful environment using a fuzzy-gain filter
 Feb

24. Quach, T., Farooq, M.
 A fuzzy logic-based target tracking algorithm
 (1998) SPIE,

25. McGinnity, S., Irwin, G.
 Fuzzy logic approach to maneuvering target tracking

26. Ashraf, A., Tummala, M., Cristi, R.
Fuzzy logic data correlation approach in multisensor-multitarget tracking systems

27. Jang, L., Chao, J.
An information fusion algorithm for data association in multitarget tracking Proc. of the
First Australian Data Fusion Symposium, ADFS-96, 1996,

Fuzzy control design for the trajectory tracking on uncertain nonlinear systems
(1999) IEEE Trans. on FS,

29. Meitzler, T., Singh, H.
Predicting probability of target detection in static infrared and visual scenes using the fuzzy
logic approach

30. Gad, A., Farooq, M., Midwood, S.
Applications of fuzzy logic to target tracking in a cluttered environment SPIE Aerosense, April 2001,

31. Luo, R., Chen, T., Su, K.
Target tracking using hierarchical grey-fuzzy motion decision-making method

32. Ng, G.

33. Yuan, L., Wei-Xin, X., Lu-Ping, X.
Multisensor fuzzy-probability interacting data association algorithm
(1999) Acta Electronica Sinica,
China

34. Looney, C., Varol, Y.
Fuzzy clustering for association and fusion in multitarget tracking with multisensors

35. Chen, T., Luo, R.
Mobile target tracking using hierarchical grey-fuzzy motion decision-making method IEEE
Int. Conf. on Robotics and Automation, 2000,

36. Luo, R., Chen, T.
 Autonomous mobile target tracking system based on grey-fuzzy control algorithm

37. Chen, Y., Huang, H.
 Fuzzy logic approach to multisensor data association

38. Mital, D., Chin, L.
 Simulations of neuro-fuzzy algorithms for multi-target tracking IEEE Int. Conf. on Intelligent Processing Syst., 1998,

 Fuzzy data association in multi-sensor multi-target tracking 3rd World Congress on Intelligent Control and Automation, 2000,

40. Zhu, D., Zhang, B.
 Fuzzy sensor data fusion in GPS vehicle positioning Int. Conf. on MMIF(ISIF), 1998,

41. Smith, J.
 A fuzzy logic multisensor association algorithm: Applied to noisy, intermittent and sparse data Int. Conf. on MMIF(ISIF), 1998,

42. Korpisaari, P., Lahtinen, T., Saarinen, J.
 Using fuzzy aircraft similarities in the multitarget-multisensor tracking Int. Conf. on MMIF(ISIF), 1998,

43. Yousef, H.
 Design and implementation of a fuzzy logic computer-controlled sun tracking system
 Slovenia, July

44. Ma, C.-W., Teng, C.
 Tracking a near-field moving target using fuzzy neural networks
45. Parizeau, M., Plamondou, R.
 A fuzzy-syntactic approach to allograph modeling for cursive script recognition
 IEEE Trans. on PAMI, 1995,

46. Gader, P., Mohamed, M., Chiang, J.
 Comparison of crisp and fuzzy character neural networks in handwritten word recognition
 Aug.

47. Chiang, J., Gader, P.
 Hybrid fuzzy-neural systems with handwritten word recognition

48. Gader, P., Mohamed, M., Killer, J.M.
 Dynamic programming based handwritten word recognition using the Choquet fuzzy
 integral as the match function

49. Mohamed, M., Gader, P.
 Generalized hidden Markov models - Part II: Application to handwritten word recognition

50. Gader, P., Keller, J.M.
 Neural and fuzzy methods in handwritten recognition

51. Nelson, B.
 Automatic vehicle detection in infrared imagery using a fuzzy inference-based classification
 system

52. Benkhalifa, M., Beusaid, A.
 Text categorization using the semi-supervised fuzzy C-means algorithm Proc. NAFIPS'99, 1999,

53. Lazzerini, B., Marcelloni, F.
 Fuzzy classification of handwritten characters

54. Lazzerini, B., Marcelloni, F., Reyneri, L.M.
55. Chi, Z., Yan, H.
 Handwritten numerical recognition using a small number of fuzzy rules with optimized defuzzification parameters

56. Lazzerini, B., Marcelloni, F.
 A linguistic fuzzy recognizer of off-line handwritten characters

57. Su, M., Zhao, Y.
 A fuzzy rule-based approach to recognition 3-D arm movements
 June

58. Adeli, H., Hung, S.
 Fuzzy neural network learning model for image recognition

59. Fang, N., Wang, H., Cheng, M.
 A fuzzy target recognition system with homomorphic invariant feature extraction
 (1993) Int. J. of Syst. Science,

60. Kuncheva, L.

61. Kwan, H. K.; Cai, Y.
 A fuzzy neural network and its application to pattern recognition
 (1994) IEEE Transactions on Fuzzy Systems, volume 2, issue 3, pages 185-193,

62. Kim, Y., Mitra, S.
 An adaptive integrated fuzzy clustering model for pattern recognition

63. Liu, X., Tan, S.
Fuzzy pyramid-based invariant object recognition
(1994) Pattern Recog.,

64. Morge, A., McLaren, R.
Uncertainty management for rule-based systems with applications to image analysis

65. Farbiz, F., Menhaj, M.
A new fuzzy logic filter for image enhancement IEEE Int. Conf. on SMC, 2000,

66. Lazzerini, B., Marcelloni, F.
A linguistic fuzzy recognizer of off-line handwritten characters
April

67. Ying, Y., Woo, P.
Speech recognition using fuzzy logic Int. Joint Conf. on Neural Net, 1999,

68. Zhao, T., Woo, P.
Fuzzy speech recognition
Int. Joint Conf. on Neural Net, 1999,

69. Ying, Y., Tahernezhadi, M.
Isolated word speech recognition using fuzzy logic

70. Yong, L., Bin, Z., Shaowei, X.
Self-organizing network with fuzzy hyperellipsoidal classifying and its application in unconstrained handwritten numeral recognition
(2000) J. of Tsinghua University,
China

71. Castillo, O., Melin, P.
A new method for fuzzy estimation of the fractal dimension and its applications to time series analysis and pattern recognition
(2000) 19th NAFIPS,

72. Hai-Yan, C., Fei-Hu, O.
Application of fuzzy set to subject recognition

73. Megherbi, D., Lodhi, S., Boulenouar, J.
 Fuzzy logic model-based techniques with application to Urdu characters recognition

74. Meada, Y., Tanabe, M.
 Hierarchical control for autonomous mobile robots with behavior-decision fuzzy algorithm
 (1992) IEEE Trans. on RA, May

75. Song, K., Tai, J.
 Fuzzy navigation of a mobile robot
 (1992) IEEE Trans. on IRS, July

76. Raju, G., Zhou, J.
 Fuzzy rule based approach for robot motion control
 (1992) FUZZ-IEEE,

77. Liu, M.
 Robotic deburring based on fuzzy force control
 (1992) IEEE Trans. on IRS, July

78. Liu, M., Wienand, S.
 Applications of fuzzy logic in automated robotic deburring
 (1994) Fuzzy Sets and Systems,

79. Chen, B., Uang, H., Tseng, C.
 Robust tracking enhancement of robot systems including motor dynamics: A fuzzy-based dynamic game approach
 (1998) IEEE Trans. on FS,

80. Koo, T.
 Model reference adaptive fuzzy control of robot manipulator
81. Neo, S., Er, M.
 Adaptive fuzzy controller of a robot manipulator
 (1996) Int. J. Syst. and Science,
82. Commuri, S., Lewis, F.
 Adaptive-fuzzy logic control of robot manipulators
83. Jagannathan, S.
 Discrete-time fuzzy logic control of a mobile robot with an onboard manipulator
 (1997) Int. J. Syst. and Sci.,
84. Tsai, C., Wang, C., Liu, W.
 Robust fuzzy model-following control of robot manipulators
85. Zurada, J., Wright, A., Graham, J.H.
 A neuro-fuzzy approach for robot system safety
 Feb.
86. Kim, S., Park, M.
 Fuzzy compliance robot control using multi-rule base
 (1992) IEEE Trans. on FS,
87. Li, W., Zhang, B.
 Fuzzy control of robotic manipulators in the presence of joint friction and loads changes Int. Comput. Eng. Conf., Aug. 1993,
88. Tanaka, K., Kosaki, T., Wang, H.
 Fuzzy control of a mobile robot with multiple trailers-satiability analysis and parallel distributed compensation
 (1996) IEEE Trans. on Intell. Control,
89. Zhang, J.
 Applications of fuzzy logic control in autonomous robot systems
90. Suh, H., Kim, T.
Fuzzy membership function based neural networks with applications to the visual servoing of robot manipulators

91. Kim, W., Ko, J., Chung, M.
Uncertain robot environment modeling using fuzzy numbers
(1994) Fuzzy Sets and Systems,

92. De Neyer, M., Gorez, R.
Fuzzy and quantitative model-based control systems for robotic manipulators
(1993) Int. J. of Approx. Reasoning,

93. Zhen, L., Xu, L.
On-line fuzzy tuning of indirect field-oriented induction machine drives

94. Mir, S., Elbuluk, M., Zinger, D.
PI and fuzzy estimators for tuning the stator resistance in direct torque control of induction machines

95. Bose, B., Patel, N.
Quasi-fuzzy estimation of stator resistance of induction motor

96. Saetieo, S., Tprrey, D.
Fuzzy logic control of space-vector PWM current regulator for three-phase power converters

97. Tomescu, B., Van Landingham, H.
Improved large-signal performance of parallel DC-DC converters current sharing using fuzzy logic control
IEEE Trans. on PE, '99,

98. Dixon, W., Contardo, J., Moran, L.
A fuzzy-controlled active front-end rectifier with current harmonic filtering characteristics and minimum sensing variables
99. Nazarko, J., Zalewski, W.
 The fuzzy regression approach to peak load estimation in power distribution system

100. Cheok, A., Ertugrul, N.
 High robustness and reliability of fuzzy logic based position estimation for sensorless
 switched reluctance motor drives

101. Cupertino, F., Lattanzi, A., Salvatore, L.
 A new fuzzy logic-based controller design for DC and AC impressed-voltage drives

102. Ertugrul, E., Cheok, A.
 Indirect angle estimation in switched reluctance motor drives using fuzzy based motor
 model

103. Jang, J.
 A dead zone compensator of a DC motor system using fuzzy logic control
 (2001) IEEE Trans. on SMC,

104. Hsieh, G., Chen, L., Huang, K.
 Fuzzy-controlled Li-ion battery charge system with active state-of-charge controller

105. Bose, B.
 Experts systems, fuzzy logic, and neural network applications in power electronics and
 motion control

106. He, S., Tan, S.
 Control of dynamical processes using an on-line rule-adaptive fuzzy control systems
 (1993) Fuzzy Sets and Systems,

107. Malki, H., Li, H., Chen, G.
 New design and stability analysis of fuzzy proportional-derivative control systems

108. Steyn, W.
Fuzzy control for a non-linear MIMO plant subject to control constraints IEEE Trans. on SMC, ’94.

109. Su, C., Stepanenko, Y.
Adaptive control of a class of nonlinear systems with fuzzy logic

110. Yager, R.
On a hierarchical structure for fuzzy modeling and control

111. Yu, W., Bien, Z.
Design of fuzzy logic controller with inconsistent rule base

112. Kim, E., Park, M.
A new approach to fuzzy modeling

113. Sugeno, M., Yasukawa, T.
A fuzzy-logic-based approach to qualitative modeling

114. Hathaway, R., Bezdek, J.
Switching regression model and fuzzy clustering

115. Kim, S., Cho, Y., Park, M.
A multirule-base controller using the robust property of a fuzzy controller and its design method
(1996) IEEE Trans. on FS,

116. Kim, J., Zeigler, B.
Designing fuzzy logic controllers using a multiresolutional search paradigm
(1996) IEEE Trans. on FS,

117. Li, W.
Design of a hybrid fuzzy logic proportional plus conventional integral-derivative controller
(1998) IEEE Trans. on FS,

May

121. Li, W. A method for design of a hybrid neuro-fuzzy control system based on behavior modeling (1997) IEEE Trans. on FS,

122. Joo, Y., Shieh, L., Chen, G. Hybrid state-space fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems IEEE Trans. on FS, '99,

124. Moon, S. Equivalence between fuzzy logic controllers and PI controllers for single input systems (1995) FSS,

126. Zaho, J., Wertz, V., Gorez, R. Dynamic fuzzy state-feedback controller and its limitations 13th IFAC World Congress, 1996,

128. Singer, D., Chen, P.
Fuzzy chemicals kinetics: An algorithmic approach

129. Vuorimaa, P., Jukarainen, T., Karpanoja, E.
A neuro-fuzzy system for chemical agent detection
(1995) IEEE Trans. on FS,

130. Song, J., Park, S.
A fuzzy dynamic learning for chemical process control

131. Jukarainen, T., Karpanoja, E., Vuorimaa, P.
Gas recognition using fuzzy self-organizing map (1994) 4th Dortmund Fuzzy Days,
Germany

132. Aoyama, A., Doyle, F., Venkatasubramanian, V.
Fuzzy neural network techniques and their applications to nonlinear chemical process control systems
(1999) Fuzzy Theory Syst.,
Academic press

133. Mitra, S.
Fuzzy MLP based expert system for medical diagnosis
(1994) Fuzzy Sets and Systems,

134. Watanabe, S., Yakownik, W.
Application of a fuzzy discrimination analysis for diagnosis of valvular heart disease

135. Shieh, J., Linkens, D., Peacock, J.
Hierarchical rule-based and self-organizing fuzzy logic control for depth of anaesthesia
(1999) IEEE Trans. on SMC,

136. Linkens, D., Hasnain, S.

137. Linkens, D., Shieh, J., Peacock, J.
Hierarchical fuzzy modeling for monitoring depth of anaesthesia
138. Verma, B., Zakos, J.
A computer-aided diagnosis system for digital mammograms based on fuzzy-neural and feature extraction techniques
(2001) IEEE Inf. Tech. In Biomedical,

139. Meier, R., Nienwland, J.
Fuzzy logic control of blood pressure during anaesthesia
(1992) IEEE CSM, 12.

140. Schanblin, J., Derighetti, M.
Fuzzy logic control of mechanical ventilation during anaesthesia

141. Mikut, R., Jakel, J.
Data-based design of fuzzy systems for medical diagnosis problems
(2000) Automatisierungstechnik,
Germany, July

142. O'Brien, A., Winters, J.
A fuzzy muscle force estimator for use within an intelligent expert system
(1999) IEEE Eng. in Medicine and Biology,

143. Moller, D.
Fuzzy logic in discrete modeling and simulation in medical applications
July

144. Ling, J., Guerra, J.
Continuous cardiac output determining from blood pressure waveforms using a fuzzy logic model
(1999) IEEE Eng. in Medicine and Biology,

145. Tsai, D., Watanabe, S.
Application of a genetic-algorithm-based fuzzy reasoning for classification of myocardial heart disease
(1999) CARS'99 Computer Assisted Radiology and Surgery,

146. De, S., Biswas, R., Roy, A.
An application of intuitionistic fuzzy sets in medical diagnosis
(2000) Fuzzy Sets and Systems,
Jan.

147. Altrock, C., Krause, B., Zimmermann, H.
Advanced fuzzy logic control of a model car in extreme situations
(1992) Fuzzy Sets and Systems,

148. Kikuchi, S., Parameswaran, J.
Use of fuzzy control for designing transportation schedules Proc. NAFIPS Meeting,
Allentown, PA, 1993,

149. Kikuchi, S., Chakroborty, P.
Car-following model based on fuzzy inference system (1993), Trans. Res. Record, No. 1365

150. Lea, R., Jani, Y.
Design and performance of a fuzzy logic based vehicle controller for autonomous collision
avoidance Conf. on FNS, Nov. 1991,

151. Tanaka, K., Kosaki, T.
Design of a stable fuzzy controller for an articulated vehicle
(1997) IEEE Trans. on SMC,

152. Tanaka, K., Sano, M.
Trajectory stabilization of a model car via fuzzy control

153. Pang, G., Takahashi, K.
Adaptive route selection for dynamic route guidance system based on fuzzy-neural
approaches

154. Pin, F., Watanabe, Y.
Steps toward sensor-based vehicle navigation in outdoor environment using a fuzzy
behaviorist approach

155. Jia, Zhang, X.
Distributed intelligent railway traffic control based on fuzzy decisionmaking
(1994) Fuzzy Sets and Systems,

156. Lea, R., Hoblit, J., Jani, Y.
Performance comparison of a fuzzy logic based attitude controller with the shuttle on-orbit
digital autopilot
Proc. NAFIPS, May 1991,

157. Buijtenen, W., Scharm, G.
Adaptive fuzzy control of satellite attitude by reinforcement learning
(1998) IEEE Trans. on FS,
May

158. Tseng, C., Teo, D.
Ship-mounted satellite tracking antenna with fuzzy logic
(1998) IEEE Trans. on AES,

159. Napolitano, M., Casanova, J.
Neural and fuzzy reconstructions for the virtual flight data recorder
(1999) IEEE Trans. on Aerospace and Electronic Systems,
Jan

160. Chiang, C.-Y., Youssef, H.
Neural fuzzy approach to F/A-18 aircraft failure isolation and reconfiguration design
(1995) AIAA GNC,

161. Scharm, G., Ijff, J.
Fuzzy logic control of aircraft: A straightforward MIMO design
(1996) AIAA, J. Guidance, Control, and Dynamics,

162. Tseng, C., Chi, C.
Aircraft antilock brake system with neural networks and fuzzy logic
(1995) J. of Guidance, Control, and Dynamics,
Oct.

163. Won, T., Song, D.
A design for fuzzy control for high performance aircraft
(1999) ISIE,

164. Lin, C., Chen, Y.
Design of fuzzy logic guidance law against high-speed targets
(2000) AIAA, J. Guidance, Control, and Dynamics,
165. Rahbar, N., Manhaj, M.
Fuzzy-logic-based closed optimal law for homing missile guidance
(2000) AIAA, J. Guidance, Control, and Dynamics,

166. Wu, S., Engelen, C.
Fuzzy logic based flight control of the atmospheric re-entry crew return vehicle Int. Conf. on Spa. Guid., Nav., and Con. Sys, 2000,

167. Ortega, G., Mulder, J., Verbruggen, H.
Fuzzy logic for spacecraft control: An european approach
Int. Symposium on A.I., Rob. and Automation in Space, 1999,

168. Jing, Y., Yidong, Y., Yanming, F.
Fuzzy logic based flight/thrust integrated control system
(2000) J. of Nanjing University of Aeronautics & Astronautics,
Feb.

169. Nho, K., Agrarwal, R.
Automatic landing system design using fuzzy logic
(2000) AIAA, J. Guidance, Control, and Dynamics,
April

170. Fernandez-Montesinos, M., Vingerhoeds, R., Koppelaar, H. Mimicking a fuzzy flight controller using B-splines Conf. on A. I. in Real-Time Control, 1998,

171. Zilouchian, A., Juliano, M.
Design of a fuzzy controller for a jet engine fuel design
(2000) J. Control Eng. Practice,
Aug.

172. Foo, S.
A fuzzy logic approach to fire detection in aircraft dry bays and engine compartments
(2000) IEEE Trans. on IE,

173. Kwan, C., Xu, H., Lewis, F.
Robust spacecraft attitude control using adaptive fuzzy logic
174. Krishna, M., Kreinovich, V., Osegueda, R.
 Fuzzy logic in nondestructive testing of aerospace structures
 (2000) 42nd MWSCS,

175. Kandel, A., Manor, D.
 ATM traffic management and congestion control using fuzzy logic
 (1999) IEEE Trans. on SMC,

176. Kandel, A., Manor, D.
 A comparative analysis of fuzzy versus conventional policing mechanisms for ATM networks
 (1996) IEEE/ACM Trans. Networking,
 June

177. Chen, S.P., Wang, K.
 Traffic modeling, prediction, and congestion control for high-speed networks: A fuzzy AR approach
 IEEE Trans. on FS, '00,

178. Cheng, R., Chang, C., Lin, L.
 A QoS-Provisioning neural fuzzy connection admission control for multimedia high-speed networks
 IEEE Trans. on Networking, '99,

179. Hu, Q., Petr, D.
 Self-tuning fuzzy traffic rate control for ATM networks
 (1996) IEEE ICC'96,

180. Edwards, G., Kandel, A., Sankar, R.
 Fuzzy handoff algorithms for wireless communication
 (2000) Fuzzy Sets and Systems,

181. Yaghmaee, M., Safavi, M., Menhaj, M.
 An efficient fuzzy based traffic policer for ATM networks
 (2000) IEICE Trans. on Comm.,

182. Bosc, P., Damiani, E.
 Fuzzy service selection in active networks
 (2000) IEEE Trans. on FS,

183. Ramirez-Barajas, J., Dieck-Assad, G., Soto, R.
A fuzzy logic based AGC algorithm for radio communication system
(2000) IEEE Trans. on FS,

184. Chou, L., Fan, Y.
Fuzzy handoff handling for wireless ATM networks IEEE Int. Symp. on Intell. SP and Comm. Sys., 1999,

185. Huang, Y., Wen, J.
Adaptive fuzzy interference cancellation for CMDA communication channel
IEEE Vehicular Tech. Conf., 2000,

186. Dimyati, K., Chin, Y.
Policing mechanism and cell loss priority control on voice cells in ATM networks using fuzzy logic IEE Proc. Communications, Aug. 2000,

187. Liu, K., Lee, R., Chan, A.
Building a fuzzy system for ranking telecommunication access network projects
Int. Conf. on Knowledge-Based Intelligent Engineering Systems and Allied Technologies, 2000,

188. Shuhong, Z., Mianyun, C.
Fuzzy random analysis of the reliability of network

189. Liang, Q., Karnik, N., Mendel, J.
Connection admission control in ATM networks using survey-based type-2 fuzzy logic systems IEEE Int. Conf. on SMC, ’00,

190. Jing, Z., Luo, A., Tomizuka, M.
Stochastic, fuzzy, neural system for intelligent tracking of multiple maneuvering targets (1998) ICMMF(ISIF),

191. Egusa, Y., Akahori, H.
An application of fuzzy set theory for an electronic video camera image stabilizer
(1995) IEEE FS,

Aug.

192. Egusa, Y., Akahori, H.
An electronic video camera image stabilizer operated on fuzzy theory
(1992) IEEE Trans. on FS, March

193. Catania, A.V., Russo, M.
 VLSI hardware architecture for complex fuzzy systems
 (1999) IEEE Trans. on FS,

194. Tsang, D., Bensaou, B., Lan, S.
 Fuzzy-based rate control for real-time MPEG video
 (1998) IEEE Trans. on FS,

195. Jou, J., Chen, P.-Y., Yang, S.-F.
 An adaptive fuzzy logic controller: Its VLSI architecture and applications
 (2000) IEEE Trans. on FS,

196. Ayyub
 Systems framework for fuzzy sets in civil engineering
 (1991) Fuzzy Sets and Syst.,

197. Furuta
 Comprehensive analysis for structural damage based upon fuzzy set theory
 J. Intell. & FS, 1993,

198. Forrai, Hashimoto, S.
 Fuzzy logic based vibration suppression control of flexible structures
 (2000) IEEE Int. WAMC, NJ

199. Shen, Y., Homaifar, A., Chen, D.
 Vibration control of flexible structures using fuzzy logic and genetic algorithms Proc. the 2000 ACC, Chicago, 2000,

200. Kerjici
 Aug.

201. Stylios, C., Groumpos, P.
 Application of fuzzy cognitive maps in a large manufacturing system 8th IFAC/IFORS/IMAC/IFIP Symposium, 1999,
202. Gunes, M.
Fuzzy approaches to the production problems: The case of refinery industry 3rd Int. Conf. on Information Fusion, 2000,

203. Shi-Rong, L., Jin-Shou, Y.
A fuzzy inference system based on optimal fuzzy cluster and its application in product quality
June

204. Xinyu, S., Peigen, L.
A multi-level fuzzy synthesis model for machine tools selection
(2000) J. of Huazhong University of Science and Technology,
China, Oct.

205. Patton, R., Chen, J., Benkhedda, H.
A study on neuro-fuzzy systems for fault diagnosis
Nov.

206. Meimei, G., Zhiming, W.
Fuzzy reasoning petri net and its application to fault diagnosis
(2000) Acta Automatica Sinica,
China, Sept.

207. Bingul, Z., Cook, G., Strauss, A.
Application of fuzzy logic to spatial thermal control in fusion welding
(2000) IEEE Trans. on IA,

208. Moon, U., Lee, K.
Temperature control of glass melting furnace with fuzzy logic and conventional PI control
American Control Conference, Chicago, 2000,

209. Gorodetsky, A., Sergeyev, A.
Optical fuzzy sensors

210. Pisarkiewicz, T., Potempa, P.
Fuzzy logic in the improvement of semiconductor gas sensor performance

Yi, W., Rong, C.
Reflection type surface roughness fiber-optic sensor and its fuzzy algorithm
July

Authors’ affiliation
GA; FM: Dept. of Electrical and Comp. Eng., Royal Military College of Canada, Kingston, Ont.
K7K 7B4, Canada

Correspondence address
Gad A.; Dept. of Electrical and Comp. Eng., Royal Military College of Canada, Kingston, Ont.
K7K 7B4, Canada; email: ahmed.gad@rmc.ca