Design of optimal fuzzy logic controller with genetic algorithms

Rekik, C.; Djemel, M.; Derbel, N.; Alimi, A.

Abstract

This paper is aimed at looking into the determination of optimal trajectories of the non-linear model of two-links articulated manipulator. In a first step, genetic algorithms are used to generate a sequence of the optimal control which is used to bring the manipulator robot at a desired position. In a second step, genetic algorithms optimize the parameters of membership functions and consequences of a Sugeno fuzzy logic based optimal controller. Simulation results show that the second step gives suboptimal solutions, however the first step yields to optimal solutions which are very sensitive with respect the parameters variation of the system.

References

1. Jang, J.S.
 Self-learning fuzzy controller based on temporal back propagation
2. Jang, J.S.
 ANFIS adaptive-network-based fuzzy inference system
3. Grefenstette, J.J.
 Optimization of control parameters for genetic algorithms
4. Goldberg, D.E.
 Genetic algorithms in search, optimization, and machine learning
 (1989), (Addison-Wesley, New York)
5. Holland, J.H.
 Adaptation in natural and artificial systems
 (1975), University of Michigan Press, Ann Arbor
6. Karr, C.L.
 Genetic algorithm for fuzzy logic controller

7. Karr, C.L., Gentry, E.J.
Fuzzy control of pH using genetic algorithms

8. Kwan, H. K.; Cai, Y.
A fuzzy neural network and its application to pattern recognition

9. Kosko, B.
Fuzzy thinking: The new science of fuzzy logic
(1993), New York: Hyperion

10. Murakami, S., Maeda, M.
Automotive speed control system using a fuzzy logic controller
(1985) Industrial Applications of Fuzzy Control, pp. 105-123.
Editor M. Sugeno, New York, Elsevier

11. Park, D., Kandel, A., Langholz, G.
Genetic-based new fuzzy reasoning models with application to fuzzy control

A methodology using fuzzy logic to optimise feedforward artificial neural network configurations

13. Tang, K.L., Mulholland, R.J.
Comparing fuzzy logic with classical controller designs

Industrial applications of fuzzy logic and intelligent systems

Authors’ affiliation
RC; DM; DN: ICOS, University of Sfax, ENIS, Bp. W., 3038 Sfax, Tunisia
AA: REGIM, University of Sfax, ENIS, BP. W., 3038 Sfax, Tunisia
Correspondence Address
Rekik C.; ICOS, University of Sfax, ENIS, Bp. W., 3038 Sfax, Tunisia; email: Chokri.Rekik@enis.rnu.tn