Performance evaluation of controlled steel frames under multilevel seismic loads

Barroso, L.R.; Breneman, S.E.; Allison Smith, H.

Abstract
The goal of this research is to evaluate different structural control methods in enhancing the overall structural performance under seismic excitations. This study focuses on steel moment resisting frames and several types of possible controllers: (1) friction pendulum base isolation system; (2) linear viscous dampers; and (3) active tendon brace system. Two structures are selected from the SAC Phase II project, the three story system, and the nine story system. Simulations of these systems, both controlled and uncontrolled, are prepared using the three suites of earthquake records, also from the SAC Phase II project, that represent three different return periods. Several controllers are developed for each structure, and their performance is judged based on both roof and interstory drift and normalized dissipated hysteretic energy. Results indicate that structural control systems are effective solutions that can improve structural performance. All three control strategies investigated can significantly reduce the seismic demands on a structure, thereby reducing the expected damage to the structure.

References
1. Agrawal, A.K., Yang, J.N.
2. Aiken, I.D., Kelly, J.M.
3. Bani-Hani, K., Ghaboussi, J.
4. Bani-Hani, K., Ghaboussi, J., Schneider, S.P.
5. Barroso, L.R.
(1999) Performance Evaluation of Vibration Controlled Steel Structures under Seismic Loads,
6. Barroso, L.R., Breneman, S.E., Smith, H.A.
Evaluating the effectiveness of actively controlled structures within the context of performance-based engineering
7. Battaini, M., Casciati, F., Faravelli, L.
Fuzzy control of structural vibration: An active mass system driven by a fuzzy controller
8. Breneman, S.E.
(2000) Practical Design Issues in the Design of Active Control Systems for Civil Engineering Structures,
(1997) NEHRP Guidelines for the Seismic Regulation of Existing Buildings and Other Structures
10. Buckle, I.G., Mayes, R.L.
Seismic isolation history, application, and performance - A world view
11. Chase, J.G., Smith, H.A.
Robust control considering actuator saturation
12. Cherry, S., Filiatraut, A.
Seismic response control of buildings using friction dampers
13. Clough, R.W., Penzien, J.
14. Constantinou, M.C.
Principles of friction, viscoelastic, yielding steel, and fluid dampers: Properties and design
M. C. Constantinou, ed., Springer, New York

15. Constantinou, M.C., Mokha, A., Reinhorn, A.M.
Teflon bearings in base isolation II: Modeling

16. Constantinou, M.C., Mokha, A., Reinhorn, A.M.
Study of sliding bearing and helical-steel-spring isolation system

17. Constantinou, M.C., Symans, M.D.
(1992) Experimental and Analytical Investigation of Seismic Response of Structures with Supple-mental Fluid Dampers,
Rep. No. NCEER-92-0032, National Center for Earthquake Engineering Research, Buffalo, N.Y.

18. Constantinou, M.C., Tsoupelas, Y.-S., Okamoto, S.
(1993) NCEER-TAISEI Corporation Research Program on Sliding Seismic Isolation Systems for Bridges - Experimental and Analytical Studies.,
Rep. No. NCEER-93-0020, National Center for Earthquake Engineering Research, Buffalo, N.Y.

Role of control-structure interaction in protective system design

20. Fu, Y., Kasai, K.
Comparative study of frames using viscoelastic and viscous dampers

21. Gupta, A.
(1999) Seismic Demands for Performance Evaluation of Steel Moment Resisting Frame Structures,
PhD, Stanford Univ., Stanford, Calif.

22. Gupta, M.M.
Fuzzy-neural computing systems: Recent developments and future directions
Dortmund, Germany

23. Krawinkler, H., Gupta, A.
Story drift demands for steel moment frame structures in different seismic regions

24. Kwan, H.K., Cai, Y.
A fuzzy neural network and its application to pattern recognition

25. Lin, R.C., Liang, Z., Soong, T.T., Zhang, R.H., Mahmoodi, P.
An experimental study on seismic behavior of viscoelastic structures

26. Llera, J.C., Almazan, J.L.
Some practical aspects in the modeling of friction pendulum devices

27. Mokha, A., Constantinou, M.C., Reinhorn, A.M.
(1988) Teflon Bearings in Aseismic Isolation: Experimental Studies and Mathematical Modeling,
Rep. No. NCEER-88-0038, National Center for Earthquake Engineering, Buffalo, N.Y.

28. Mokha, A., Constantinou, M.C., Reinhorn, A.M., Zayas, V.
Experimental study of friction pendulum isolation system

29. Nagarajaiah, S.
Fuzzy controller for structures with hybrid isolation system
(1994) Proc., 1st World Conf. on Structural Control, pp. 67-76. Los Angeles

Benchmark control problems for seismically excited nonlinear buildings
(2000) Proc., 2nd European Conf. on Structural Control, Champssur-Marne, France

32. Smith, H.A., Schemmann, A.G.
Modeling issues associated with vibration control of cable-stayed bridges
(1996) Proc., 2nd. Int. Workshp on Structural Control, pp. 509-520. Hong Kong, Japan
33. Sommerville, P., Smith, N., Punyamurthula, S., Sun, J.

 Development of ground motion time histories for phase n of the FEMA/ SAC steel project

34. Spencer, B.F., Sain, M.K.

 Controlling buildings: A new frontier in feedback

35. Spencer, B.F., Suhardjo, J., Sain, M.K.

 Frequency domain optimal control strategies for aseismic protection

36. Vision 2000 - A framework for performance-based design,

 (SEAOC) Sacramento, Calif.

37. Suhardjo, J., Spencer, B.F., Kareem, A.

 Frequency domain optimal control of wind excited structures

38. Tsoupelas, Y.-S., Okamoto, S., Constantinou, M.C., Osaki, D., Fujii, S.

 (1994) NCEER-TASAI Corporation Research Program on Sliding Seismic Isolation System for Bridges - Analytical and Experimental Study of Systems Consisting of Sliding Bearings, Rubber Restoring Force Devices, and Fluid Dampers.,

 Rep. No. NCEER-94-0002, National Center for Earthquake Engineering Research, Buffalo, N.Y.

39. Venini, P., Wen, Y.K.

 Hybrid vibration control of MDOF hysteretic structures with neural networks

 (1994) Proc., 1st World Conf. on Structural Control, pp. 53-62.

 Los Angeles

40. Wen, Y.K.

 Method for random vibration of hysteretic systems

41. Zayas, V., Low, S.S., Mahin, S.A.

 Rep. No. UCB/EERC-87/01, Univ. of California, Berkeley, Berkeley, Calif.

42. Zhang, R.H., Soong, T.T., Mahmoodi, P.

 Seismic response of steel frame structures with added viscoelastic dampers
Authors’ affiliation
BLR: Dept. of Civil Engineering, Texas A and M Univ., 3136 TAMU, College Station, TX 77843-3136
BSE; ASH :Dept. of Civ. and Environ. Eng., Stanford Univ., Stanford, CA 94305-4020

Correspondence Address
Barroso L.R.; Dept. of Civil Engineering, Texas A and M Univ., 3136 TAMU, College Station, TX 77843-3136, United States; email: lbarroso@tamu.edu