ACCOUNTING FOR SPATIAL VARIATIONS USING SPATIAL AUTOCORRELATION AND FUZZY CLASSIFIERS ALGORITHM

by

Payal Singh

B.Plan., School of Planning and Architecture, India, 2002
M.Plan., School of Planning and Architecture, India, 2004

A Thesis
Submitted in Partial Fulfillment of the Requirements for the
Master of Science Degree

Department of Geography and Environmental Resources
in the Graduate School
Southern Illinois University Carbondale
August 2006
AN ABSTRACT OF THE THESIS OF
Payal Singh, for the Master of Science degree in GEOGRAPHY AND ENVIRONMENTAL RESOURCES, presented on JUNE 29, 2006, at Southern Illinois University Carbondale.

TITLE: ACCOUNTING FOR SPATIAL VARIATIONS USING SPATIAL AUTOCORRELATION AND FUZZY CLASSIFIERS ALGORITHM

MAJOR PROFESSOR: Dr. Tonny J. Oyana

It is extensively anticipated that future GIS will have augmented analytical capacities taking it ahead of being proficient display and database management mechanisms. The study confers the integration of spatial autocorrelation with fuzzy clustering techniques as a new approach to assess the potentially powerful capabilities of spatial analysis within GIS.

The approach is based on the fact that unlike the spatial autocorrelation techniques that compute the correlation between attribute values and location, the fuzzy clustering algorithms compute the concentration of a spatially distributed attribute variable. The dataset used for the experiment is the child lead poisoning incidences in US both at county and state levels for the year 2004 obtained from the Centers for Disease Control and Prevention (CDC).

The findings of the study demonstrate that the combination of the inexact knowledge by means of fuzzy clustering algorithms and the exact knowledge results from the measures of spatial autocorrelation provides an effective way to account for spatial variations, especially notable with regards to the public health data analysis.
BIBLIOGRAPHY

Anselin, L. 1994. Local Indicators of Spatial Association - LISA. Research Paper 9331, Regional Research Institute, West Virginia University, United States.

F. Höppner, F. Klawonn, 2000. Obtaining Interpretable Fuzzy Models from Fuzzy Clustering and Fuzzy Regression. Proc. of the 4th Int. Conf. on Knowledge-Based

VITA

Graduate School
Southern Illinois University

Payal Singh Date of Birth: December 2, 1980

1615 Logan Drive, Apt#16, Carbondale, Illinois 62901
261 Sector 3, Sadiq Nagar, New Delhi, India 110049

School of Planning and Architecture, India
Bachelor of Planning, Physical Planning, May 2002

School of Planning and Architecture, India
Master of Planning, Transport Planning, May 2004

Thesis Title:
 Accounting for Spatial Variations using Spatial Autocorrelation
 and Fuzzy Classifiers Algorithm

Major Professor: Dr. Tonny Oyana