Design of 2-D FIR Digital Filters by McClellan Transformation and Least Squares Eigencontour Mapping

Soo-Chang Pei, Senior Member, IEEE, and Jong-Jy Shyu

Abstract—A powerful eigenfilter approach is proposed to determine the optimal coefficients of McClellan transformation. It can design arbitrary shape transformation contours to map from 1-D prototypes to 2-D FIR filters very effectively. This paper presents the design methods for 2-D fan filters with general slope and inclination angle, elliptically symmetric filters of arbitrary orientation, circularly symmetric filters, and diamond-shaped filters in details. Several numerical examples are given to demonstrate the usefulness and the efficiency of the present method.

I. INTRODUCTION

McClellan [1] has proposed a powerful technique for the design of 2-D FIR digital filters by means of 1-D to 2-D frequency transformation. It consists of mapping 1-D prototype filters into 2-D filters by a change of variables. McClellan's transformation procedure breaks the 2-D filter design problem up into two smaller problems, namely, designing the transformation mapping contours and designing the 1-D prototype. The main advantage of this technique is that it is very fast, because the computing time is devoted almost entirely to the 1-D design. Furthermore these 2-D filters have a very efficient structure for hardware implementation [2], [3].

The original McClellan transform [1] involves the substitution

\[\cos w = F(w_1, w_2) \]

\[= f_{00} + f_{10} \cos w_1 + f_{01} \cos w_2 + f_{11} \cos w_1 \cos w_2 \]

(1a)

in which

\[|F(w_1, w_2)| \leq 1. \]

(1b)

The transform in (1) was used for the design of 2-D linear phase FIR filters, and is extended lately to

\[\cos w = F(w_1, w_2) \]

\[= \sum_{i=0}^{I} \sum_{j=0}^{J} t_{ij} \cos i w_1 \cos j w_2 \]

\[+ \sum_{k=1}^{K} \sum_{l=1}^{L} s_{kl} \sin k w_1 \sin l w_2 \]

(2)

by Mersereau et al. [2] and Nguyen et al. [4] for designing quadrantly symmetric and centro-symmetric filters, respectively.

In general the coefficients of the McClellan transform are computed using optimization techniques [2], [5]. These techniques require a large computational effort. A new least square approximation technique is proposed for fast calculation of the McClellan transform coefficients. The technique we use in this paper is derived from the eigenfilter design [6], [7], [8], which has successfully been used to design 1-D and 2-D FIR filters in the optimal least square sense. It involves the integration of least square error along the desired contour; by minimizing a quadratic measure of the total error along the contour, a real eigenvector of an appropriate matrix is computed to get the McClellan transform coefficients. It is shown that this technique gives better results than those reported by the recent literature. Also the technique can put certain constraints on the transform coefficients such that the scaling of the transformation can be avoided [2], [9].

This paper is organized as follows: Section II describes the design of 2-D quadrantly symmetric fan filters with arbitrary inclination and the results are compared with those of [10]. Also we shall present the application of the eigenfilter approach for determining the McClellan transform coefficients. Sections III and IV explain the design of quadrantly elliptically symmetric filters and the elliptically symmetric filters of arbitrary orientation respectively, and then we compare the results with those of References [2], [11], and [4]. Section V discusses the design of quadrantly circularly symmetric filters and diamond-shaped filters. It is found that only one transformation coefficient needs be determined, then the solution can be easily obtained to minimize the error without the eigenfilter approach. For the results of circularly symmet-
VI. CONCLUSIONS

This paper presents a powerful eigenfilter approach to determine the optimal coefficients of McClellan transformation. The contour error minimization is extremely simple and fast through very small size matrix eigenvector computation. It can design arbitrary shape transformation contours to map from 1-D prototypes to 2-D FIR filters very effectively. Several numerical examples including 2-D fan filters, elliptically/circularly symmetric filters, and diamond-shape filters are demonstrated to show the effectiveness of this approach.

REFERENCES

Soo-Chang Pei (S’90) was born in Soo-Auo, Taiwan, China on February 20, 1949. He received the B.S. degree from National Taiwan University in 1970 and the M.S. and Ph.D. degrees from the University of California, Santa Barbara in 1972 and 1975, respectively, all in electrical engineering.

He was an engineering officer in the Chinese Navy Shipyard at Peng Fu Island from 1970 to 1971 and a Research Assistant at the University of California, Santa Barbara from 1971 to 1975. He was Professor and Chairman in the Department of Electrical Engineering at Tatung Institute of Technology from 1981 to 1983. Presently, he is the Professor of Department of Electrical Engineering at National Taiwan University. His research interests include digital signal processing, digital picture processing, optical information processing, laser, and holography.

Dr. Pei is a member of the IEEE, Eta Keppa Nu, and the Optical Society of America.

Jong-Jy Shyu (S’88, M’93) was born in Taiwan, Republic of China, on March 7, 1960. He received the B.S. degree from the Tatung Institute of Technology, Taipei, Taiwan, in 1983 and the M.S. and Ph.D. degrees from the National Taiwan University, Taipei, in 1988 and 1992, respectively, all in electrical engineering.

He was a Research Assistant at the National Taiwan University, Taipei, from 1986 to 1991. He is currently an Associate Professor in the Department of Computer Science and Engineering, Tatung Institute of Technology, Taipei. His research interests include filter design, digital signal processing, and image processing.