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1 Overview of Geometric Algebra (GA)
• An algebra of real vectors (and their products)
• Simple formulation based on axiom: v2 = v · v
• Rich rewards:

— Explains geometric meanings of cross product

— Generalizes cross product to � � 3 dimensions → relativity

— Clears potential confusion of pseudovectors and pseudoscalars

— Constructs unit imaginary � as geometric object

— Extends complex analysis to more than two dimensions

— Reduces rotations, Lorentz transformations to algebraic multiplica-
tion

— Gives classical spinors (“rotors”) and projectors → quantum theory

— Maximally exploits geometric properties and symmetries

— Allows computational geometry without matrices or tensors

— Treats Newtonian mechanics, relativity, and quantum theory with
single formalism and language.
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2 Essentials of Clifford’s Geometric Algebra

2.1 The product

Multiplication in geometric algebra (GA) is like that for square matrices: it
is associative and distributive over addition but generally not commutative,
although multiplication by scalars commutes. Collinear vectors are related by
a scalar. Thus, if v is any vector and � and scalar, �v is collinear with v. It
follows that collinear vectors commute:

(�v)v = �vv = v (�v) �

The meaning of the “geometric product” of vectors in a space with a scalar
product is fixed by the defining axiom

v2 = v · v� (1)

which with v = u+w implies

uw+wu = 2u ·w � (2)

Exercise 1 Prove (2) from the axiom (1) with v = u+w�

The wedge product (antisymmetric part of the product)

u ∧w ≡ uw− u ·w = uw−wu
2

vanishes if and only if the vectors u�w are aligned.

Exercise 2 Show that the bivector u ∧w anticommutes not only with u but
also with w� and therefore with any linear combination of u and w� that is with
any vector in the plane of u and w�
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Exercise 3 Prove that u ∧ v is linear in both of its factors. Show, for example,
that for any scalar � and vectors u�w�w1� and w2�

u∧ (�w) = � (u ∧w) = (�u)∧w
u∧ (w1 +w2) = u ∧w1+u ∧w2 �

Any vector that is orthogonal to the plane, that is, orthogonal to both u and
w� anticommutes with both u and w and therefore commutes with the product
uw and therefore also with the bivector u ∧w.
Exercise 4 Let v be orthogonal to both u and w� Verify that v commutes with
the bivector u ∧w�

2.2 Reversal and Hermitian Conjugation

An important conjugation (aka antiautomorphism, anti-involution) is reversal
of the order of vector factors. In Euclidean spaces, it is convenient to denote
the conjugation by a dagger:

(vw)
† = w†v† = wv�

Any element invariant under reversal is said to be real whereas elements that
change sign are imaginary. Any element � can be split into real and imaginary
parts:

� =
�+ �†

2
+

�− �†

2
≡ h�i< + h�i= �
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Scalars and vectors (in a Euclidean space) are thus real, whereas bivectors are
imaginary.

Exercise 5 Show that the dot and wedge product of any vectors u�v� can be
identified as the real and imaginary parts of the geometric product uv�

2.3 Bases

While in GA we usually work directly with vectors without concern for specific
components, some properties are simpler to envision in an orthonormal basis
{e�} :

v = 	1e1 + 	2e2 + · · · ≡ 	�e� �

where the summation convention is assumed for repeated indices. In Euclidean
space the defining axiom becomes

e� · e� = 1

2
(e�e�+e�e�) = 
�� �

Thus, for example, e21 = e1 · e1 = 1 = e22 and e1 · e2 = 0�
A bivector basis is formed from the products of orthonormal basis vectors,

such as
e1e2 = e1 ∧ e2 = −e2e1 �

Its square is −1 and is therefore called a unit bivector. It represents the plane
containing all vectors that are linear combinations of e1 and e2 �

Exercise 6 Verify that (e1e2)
2 = −1�
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In an �-dimensional space, a suitable bivector basis is

{e1e2� e1e3� � � � � e1e�� e2e3� � � �} �
It contains exactly � (�− 1) �2 = ¡

�
2

¢
linearly independent elements of grade

two (bivectors).

Exercise 7 Show that while the dimensionality of bivector space is the same as
that of the vector space when � = 3� the number of linearly independent bivectors
when � = 4 is greater than �� and that when � = 5� the bivector space has twice
as many dimensions as the vector space.

Exercise 8 Consider the product uw of two vectors in the e1e2 plane, namely
u = �1e1 + �2e2 and w = 
1e1 +
2e2� Show that uw = u ·w+ u ∧w with

u ·w =
¡
�1
1 + �2
2

¢
u ∧w =

¡
�1
2 − �2
1

¢
e1e2 �

In the last exercise we saw that the bivector u ∧w is

u ∧w = e1e2 det
µ

�1 
1

�2 
2

¶
� (3)

Exercise 9 Show that u ∧w is invariant under orthogonal transformations
such as rotations in the e1e2 plane:µ

�1 
1

�2 
2

¶
→
µ
cos� − sin�
sin� cos�

¶µ
�1 
1

�2 
2

¶
�
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Evidently, u ∧w represents the plane containing u and w; its magnitude is
the area of the parallelogram with sides u and w� and its sign depends on the
direction of circulation in the plane (see Fig. 1). As the next problem shows, it
does not depend on the actual orientation of u and w in the plane.

u

w

u
w u � ww � u

Figure 1: The wedge product of two vectors represents the plane containing the
vectors. Its magnitude is the area of the parallelogram, and its sign indicates
the circulation direction in the plane. The shape is not significant.

Exercise 10 Define vectors s and u by

s =
�

2
(v+w)

u = (v−w) ��
where � is any scalar, and sketch the parallelograms formed by v and w and
by s and u with � = 1� Now show explicitly that s ∧ u = w ∧ v � [Hint: it is
sufficient to note that the wedge product is antisymmetric and linear in its two
factors.]
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The GA of �-D Euclidean space is denoted here by��� (the same as Hestenes’
G� ). More generally, ����� denotes the GA of a pseudo-Euclidean space of sig-
nature (�� �) � Thus, ��� ≡ ����0 �1

Exercise 11 Consider the triangle of vectors c = a+ b� Prove

a

b
c

�
�

�

Figure 2: A triangle of vectors c = a+ b �

a ∧ b = c ∧ b = a ∧ c

and show that the magnitude of these wedge products is twice the area of the
triangle.

1The length of a vector v = �
�e� in a pseudo-Euclidean space can be expressed in the

form

v · v =
�X

�=1

³
�
�
´2 − �+�X

�=�+1

¡
�
�
¢2

�

and the space is then said to have signature (�� �) �
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Exercise 12 Let �� �� � be the interior angles of the triangle (see last exercise)
opposite sides a�b� c� respectively. Use the relation of the wedge products to
prove the law of sines:

sin�

�
=
sin�

�
=
sin �

�
�

where �� �� � are the magnitudes of a�b� c�

Exercise 13 Let r be the position vector of a point that moves with velocity
v = ṙ� Show that the magnitude of the bivector r ∧ v is twice the rate at which
the time-dependent r sweeps out area. This relates the conservation of angular
momentum r ∧ p� with p = �v� to Kepler’s second law for planetary orbits,
namely that equal areas are swept out in equal times.

2.4 Existence and matrix representations

It’s possible to define mathematical structures that are internally inconsistent
and therefore don’t exist. The easiest way to demonstrate self-consistency is to
find a faithful matrix representation for the algebra.
The standard matrix representation of the algebra of physical (3-D Eu-

clidean) space (APS) associates orthonormal basis vectors with Pauli spin ma-
trices

e� ' ��� � = 1� 2� 3�

Since the defining relations,

1

2

¡
���� + ����

¢
= 
��1�
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work, the algebra exists.

Exercise 14 Using the standard Pauli-spin matrices

�1 =

µ
0 1
1 0

¶
� �2 =

µ
0 −�
� 0

¶
� �3 =

µ
1 0
0 −1

¶
�

verify the relation 1
2

¡
���� + ����

¢
= 
��1 for the cases � = � = 1 and � = 2�

� = 3�

Remark 1 Physicists meeting GA for the first time often find it convenient
to think of the algebra as an algebra of matrices. This was Pauli’s and Dirac’s
approach to their algebras, but we advise against it. Thinking in terms of specific
matrices is wasteful, often misleading, and unduly constraining: many matrix
reps exist for each algebra; what is important are not the matrices but only their
algebra.

3 Bivectors as operators

The fact that the bivector of a plane commutes with vectors orthogonal to the
plane and anticommutes with ones in the plane means that we can easily use unit
bivectors to represent reflections. In particular, the two-sided transformation

v→ e1e2ve1e2

reflects any vector v in the e1e2 plane, as is verified in the next exercise.

Exercise 15 Expand v = 	�e� in the �-dimensional basis {e1� e2� � � � � e�} to
prove

e1e2ve1e2 = 2
¡
	1e1 + 	2e2

¢− v = v4 − v⊥�
where v4 is the component of v coplanar with e1e2 and v⊥ = v− v4 is the
component orthogonal to the plane. In words, components in the e1e2 plane
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e1

e2

e3

v

e1e2ve1e2

Figure 3: The reflection of v in the plane e1e2 is e1e2ve1e2 �

remain unchanged, but those orthogonal to the plane change sign. This is what
we mean by a reflection in the e1e2 plane.

Exercise 16 Show that the coplanar component of v is given by

v4 =
1

2
(v + e1e2ve1e2) �

10



Find a similar expression for the orthogonal component v⊥�

One of the most important properties of bivectors is that they generate
rotations. To see this, try the following:

Exercise 17 Simplify the products e1 (e1e2) and e2 (e1e2) �

Note that both e1 and e2 are rotated in the same direction through 90 degrees
by right-multiplication with the bivector e1e2�It follows that the bivector is an
operator on vectors in the plane: any vector v = 	1e1 + 	2e2 in the e1e2
plane is rotated by 90◦ when multiplied by the unit bivector e1e2 (see Figure):
v→ v (e1e2) �

Exercise 18 Find the operator that upon multiplication from the right rotates
any vector in the e1e2 plane by the small angle �¿ 1� This should be expressed
as a first-order approximation in � .
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v1 e 1

v

v2e 2

e1e2 v1 e1 e1e 2

v2 e2 e1e2

v

Figure 4: The bivector e1e2 rotates vectors in the e1e2 plane by 90◦�

To rotate a vector by an angle � other than 90◦, use

cos � + e1e2 sin � = exp (e1e2�) � (4)

The Euler relation for the bivector follows from that for complex numbers: it
depends only on (e1e2)

2 = −1� The bivector e1e2 thus generates a rotation in
the e1e2 plane: for any vector v in the e1e2 plane, that vector is rotated by �
in the plane in the sense that takes e1 → e2 by

v→ v exp (e1e2�) = exp (e2e1�)v �

Exercise 19 Verify that the operator exp (e1e2�) has the appropriate limits
when � = 0 and when � = ��2� and that it also gives the correct linear approxi-
mation for small ��

The rotation is performed smoothly by increasing � gradually from 0 to its
full value. To represent a continual rotation in the e1e2 plane at the angular
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rate �� we can let � = ��� Note that the rotation element exp (e1e2�) can also
be expressed by

exp (e1e2�) = e1e1 exp (e1e2�) ≡ e1n �

where n = e1 exp (e1e2�) is the unit vector obtained from e1 by a rotation of �
in the e1e2 plane.

Exercise 20 Expand n = e1 exp (e1e2�) in the basis {e1� e2} and verify that
e1n = cos � + e1e2 sin �� Show that the scalar and bivector parts of exp (e1e2�)
are equal to e1 · n and e1 ∧ n� respectively.

In general, every product mn of unit vectors m and n can be interpreted as
a rotation operator of the form exp

³
B̂�
´
� where the unit bivector B̂ represents

the plane containing m and n� and � is the angle between them. The product
mn therefore does not depend on the actual directions of m and n� but only on
the plane in which they lie and on the angle between them.

Exercise 21 Let a = �e1 exp (e1e2�) and b = �−1e2 exp (e1e2�) be vectors
obtained by rotating e1 and e2 through the angle � in the e1e2 plane and then
dilating by complimentary factors. Prove that ab = e1e2 �[Hint: note that b
can also be written �−1 exp (−e1e2�) e2 and that exp (e1e2�) exp (−e1e2�) = 1�]
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3.1 Relation to Complex Numbers

The complex number  = �+ �! corresponds directly not to v = �e1+ !e2� but
rather to e1v = �+ !e1e2 :

� ←→ e1e2

 = �+ �! ←→ e1v = �+ !e1e2

 ̄ = �− �! ←→ ve1 = �+ !e2e1 �

Exercise 22 Use this correspondence to show

  ̄0 ←→ e1vv
0e1 = v · v0 − v ∧ v0

= (��0 + !!0)− (�!0 − !�0) e1e2 �

Remark 2 Geometric algebra explains why complex numbers work the way they
do to represent vectors in two dimensional spaces. At the same time, it shows
how they can be generalized to higher dimensions.

3.2 Rotations in Spaces of More Than Two Dimensions

Exercise 23 Use the Euler relation to expand the exponentials exp (B1) and
exp (B2) of bivectors B1 = �1B̂1 and B2 = �2B̂2� where B̂21 = B̂

2
2 = −1� Prove

that if B̂1 = ±B̂2� then
exp (B1) exp (B2) = exp (B1 +B2) �
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Also show that when B1B2 6= B2B1� the relation exp (B1) exp (B2) = exp (B1 +B2)
is not generally valid.

In spaces of more than two dimensions, we can use

v→"v"−1 (5)

for the rotation, where" = exp (e2e1��2) is a rotor and"−1 = exp (−e2e1��2) =
exp (e1e2��2) is its inverse.

Exercise 24 Show that rotors in Euclidean spaces are unitary: "−1 = "†�

Exercise 25 Show that if n is the unit vector into which e1 is rotated by the
rotor " = exp (e2e1��2) � that is n = "e1"

† = exp (e2e1�) e1� then

" = (ne1)
1�2

=
(ne1 + 1)p
2 (1 + n · e1)

�
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[Hint: find the unit vector that bisects n and e1� ]

3.3 Relation of Rotations to Reflections

Evidently "2 = exp (e2e1�) = ne1 is the rotor for a rotation in the plane of n
and e1 by 2�� Its inverse is e1n� and it takes any vector v into

v→ ne1ve1n �

If e3 is a unit vector normal to the plane of rotation, the rotation of v can be
written as the result of reflections in two planes

v → ne3e3e1ve3e1ne3

= (ne3) (e3e1)v (e3e1) (ne3)

The unit bivectors of the two planes are ne3 and e3e1� They intersect along e3
and have a dihedral angle of �� See Fig. (5).

Example 1 Mirrors in clothing stores are often arranged to give double reflec-
tions so that you can see yourself rotated rather than reflected. Two mirrors
with a dihedral angle of 90◦ will rotate your image by 180◦� This corresponds to
the above transformation with n replaced by e2�

Exercise 26 How could you orient two mirrors so that you see yourself from
the side, that is, rotated by 270◦ ?
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e1

e2

e3

n

�

2�

Figure 5: Successive reflections in two planes is equivalent to a rotation by twice
the dihedral angle � of the planes. In the diagram, the red ball is first reflected
in the e3e1 plane and then in the ne3 plane.

The rotation that results from successive reflections in two nonparallel planes
in physical space depends only on the line of intersection and the dihedral angle
between the planes; it is independent of rotations for both planes about their
common axis.

Exercise 27 Corner cubes are used on the moon and in the rear lenses on
cars to reverse the direction of the incident light. Consider a sequence of three
reflections, first in the e1e2 plane, followed by one in the e2e3 plane, followed
by one in the e3e1 plane. Show that when applied to any vector v� the result is
−v�

The ability to rotate in any plane of �-dimensional space without compo-
nents, tensors, or matrices is a major advantage of geometric algebra.
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Exercise 28 Show that the magnitude of Θ in the rotor " = exp (Θ) is the
area swept out by any unit vector n in the rotation plane under the rotation
n→ "n"−1� [Hint: Note that the increment in area added when the unit vector
is rotated through the incremental angle #� is 1

2#��]

Exercise 29 Consider the Euler-angle rotor " = exp
³
e2e1

�
2

´
exp

¡
e1e3

	
2

¢
exp

³
e2e1



2

´
�

Show that when � = 0 the result depends only on � + $ and is independent of
the value �− $� whereas when � = �� the converse holds.

3.4 Spatial Rotations as Spherical Vectors

Any rotation is specified by the plane of rotation and the area swept out by
a unit vector in the plane under the rotation. As any rotation in physical (3-
dimensional Euclidean) space proceeds, the unit vector sweeps out a path on
the surface %2 of a unit sphere, and this path serves to represent the rotation.
Any plane containing one of the unit vectors includes the origin and intersects
%2 in a great circle. The path representing any rotation is a directed arc on such
a great circle. We call such directed arcs spherical vectors. Spherical vectors
are as straight as they can be on %2� and they can be freely translated along
their great circles. However, spherical vectors on different great circles represent
rotations on different planes and are generally distinct.
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Any rotor " = expΘ is the product of two unit vectors a�b�

" = expΘ = ba �

where both a and b lie in the plane of Θ and the angle between them is Θ�
(Points on %2 are of course the ends of unit vectors from the origin of the
sphere; we generally represent a unit vector and its point of intersection on %2

with the same bold-face symbol.) The spherical vector
−→
ab on %2 from a to b

represents "�

Exercise 30 If " = ba� then "† = ab� Verify with these expressions that "
and "† are inverses of each other.

Exercise 31 Show that ba =
¡
"b"−1

¢ ¡
"a"−1

¢
for any rotor " = exp

³
�Θ̂

´
in the plane of a and b�

Now let’s combine " with a rotation in a different plane, say "0� Distinct
planes have distinct great circles on %2 and intersect at antipodal points. We
slide a and b along the great circle of Θ until b is at one of the intersections.
Then we can choose c so that "0 = cb and the composition

"0" = cb ba = ca

yields a rotation represented by the spherical vector −→ac = −→ab + −→bc from a to
c�The composition of rotations thus is equivalent to the addition of spherical
vectors on %2 (see Fig. 6).
The length of the spherical vector

−→
ab from a to b� which represents the rotor

" = ba� is half the maximum angle of rotation of a vector

v→ "v"−1�
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Figure 6: A product of rotations is represented by the addition of spherical
vectors.

In other words, the length of
−→
ab is the area swept out by a unit vector in

the rotation plane. Points on %2 are not directly associated with directions
in physical space. Pairs of points on %2 separated by an angle � represent
rotors in physical space that rotate vectors by up to an angle of 2�, whereas the
points themselves are associated with spinors. (The points do not fully identify
the spinors but only their poles. Their orientation about the poles requires an
additional complex phase which is not required for the treatment of rotations.)
We refer to %2 as the Cartan sphere.2 It is not to be confused with the

unit sphere in physical space. Indeed, there is a two-to-one mapping of points
from %2 to directions in physical space. Antipodes on the Cartan sphere map
to the same direction in physical space. [Spherical vectors on %2 give a faithful
representation of rotations in %& (2) � the double covering group of %'(3)�]
Note that the addition of spherical vectors is noncommutative. This reflects the
noncommutivity of rotations in different planes. See for example Fig.7.

Example 2 What’s the product of a 180◦ rotation in the e2e1 plane followed
by a 180◦ rotation in the e3e2 plane? Use the Euler relation exp (e2e1�) =
cos�+ e2e1 sin� to get

exp
³
e3e2

�

2

´
exp

³
e2e1

�

2

´
= e3e2e2e1 = e3e1 = exp

³
e3e1

�

2

´
�

The result is therefore a 180◦ rotation in the e3e1 plane. Note that we do not
need to compute an entire rotation "v"−1 but only the rotor "� In terms of

2 In recognition of Élie Cartan’s extensive work with spinor representations of simple Lie
algebras.
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�
�
��

�

e1

S2

�
� �

�

�
�

�
�

�
�
��

�

e2

e3

Figure 7: Addition of spherical vectors is not commutative. The sum (�1 +(�2 is
on a different great circle than (�2 +(�1 �

spherical vectors, the composition is equivalent to adding a 90
◦
vector on the

equator to one joining the equator to the north pole.

Exercise 32 Show that the result of a 90◦ rotation in the e1e2 plane followed
by a 90◦ rotation in the e2e3 plane is a 120◦ rotation in the plane

(e1e2+e2e3+e3e1) �
√
3 =

1

2
√
3
(e1−e2) (e1 + e2 − 2e3) �

We now have both an algebraic way and a geometric way to rotate any
vector by any angle in any plane, and the relation provides simple calculations
in geometric algebra for manipulations in spherical trigonometry. If B̂ is the
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unit bivector for the plane and � is the angle of rotation, the vector v under
rotation becomes

v → v0 = "v"−1

" = exp
³
B̂��2

´
�

If, for example, B̂ = e2e1� the sense of the rotation is from e1 towards e2�
The rotation can be evaluated algebraically without the need for components
or matrices. While one can expand " = cos ��2 + B̂ sin ��2� it is much easier
to first expand v into components in the plane of rotation (coplanar: 4) and
orthogonal (⊥) to it:

v = v4 + v⊥�

Since v4 anticommutes with B̂ whereas v⊥ commutes with it,

"v"−1 = "2v4 + v⊥

= v4 cos � + B̂v
4
sin � + v⊥�

As before, a unit bivector times a vector in the plane of the bivector rotates
that vector by a right angle in the plane.

Exercise 33 Expand "−1 to prove that v4"−1 = "v4 and v⊥"−1 = "−1v⊥�
where v4 lies in the plane of the rotation (is coplanar) and v⊥ is orthogonal to
the rotation plane.

Remark 3 Unit bivectors in physical space (� = 3) can be identified with
quaternion units: i = e3e2� j = e1e3�k = e2e1� Rotors " are then unit quater-
nions. Rotations in physical space can thus be represented in the quaternion
algebra. The geometrical interpretation is somewhat skewed since vectors in
the algebra of physical space (APS) are not part of the quaternion algebra, but
must instead be represented by their dual planes. Quaternions are popular in
the aerospace and computer-games industries for representing rotations.

Exercise 34 With the identification i = e3e2� j = e1e3�k = e2e1� show explic-
itly that

ijk = kk = −1 �

22



3.5 Time-dependent Rotations

An additional infinitesimal rotation by Ω#� during the time interval #� changes
a rotor " to

"+ #" =

µ
1 +

1

2
Ω#�

¶
" �

The time-rate of change of " thus has the form

"̇ =
#"

#�
=
1

2
Ω"�

where the bivector Ω is the rotation rate. For the special case of a constant
rotation rate, we can take the rotor to be

" (�) = )Ω��2�

Any vector r is thereby rotated to

r0 = "r"−1

giving a time derivative

ṙ0 = "

·
Ωr− rΩ

2
+ ṙ

¸
"−1

= " [hΩri< + ṙ]"−1�
where we noted that r is real and the bivector Ω is imaginary. Since r can be
any vector, we can replace it by hΩri< + ṙ to determine the second derivative

r̈0 = "
£hΩ (hΩri< + ṙ)i< + hΩṙi< + r̈¤"−1

= "
£hΩ hΩri<i< + 2 hΩṙi< + r̈¤"−1� (6)

Let’s write Ω = �Ω̂� Then hΩri< = Ωr4 = �Ω̂r
4
� where r4 is the part of r

coplanar with Ω̂� The product Ω̂r
4
is r4 rotated by a right angle in the plane

Ω̂�
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Exercise 35 Show that hΩ hΩri<i< = −�2r4 and that the minus sign can be
viewed as arising from two 90-degree rotations or, equivalently, from the square
of a unit bivector.

The result can be expressed

r̈0 = "
h
−�2r4 + 2�Ω̂ṙ4 + r̈

i
"−1

which clearly shows the transformation from the position vector r in a rotating
frame to r0 in an inertial system. A force law f 0 = �r̈0 in the inertial system is
seen to be equivalent to an effective force

f =�r̈ = "−1f 0"+��2r4 + 2��ṙ4Ω̂

in the rotating frame. The second and third terms on the RHS are identified as
the centrifugal and Coriolis forces, respectively.

4 Trivectors, Higher-Grade Multivectors, and
Duals

Higher-order products vectors are readily formed. Products of � orthonormal
basis vectors e� can be reduced if two of them are the same. If they are all
distinct, their product is a basis �-vector. Trivectors can be expanded in a basis
{e1e2e3� e1e2e4� · · · } comprising products of three distinct basis vectors. In an
�-dimensional vector space, there are

¡
�
3

¢
= � (�− 1) (�− 2) �3! of these. The

algebra contains 1 linearly independent scalar, � linearly independent vectors,¡
�
2

¢
linearly independent bivectors,

¡
�
3

¢
linearly independent trivectors, and more

generally
¡
�
�

¢
linearly independent multivectors of grade ��for a total of

�X
�=0

µ
�

�

¶
= (1 + 1)

�
= 2�

linearly independent elements. The highest grade element is the volume element,
proportional to

e� ≡ e1e2e3· · · e� �
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Exercise 36 Find the number of independent elements in the geometric algebra
of ��5 of 5-dimensional space. How is this subdivided into vectors, bivectors, and
so on?

The general element of the algebra contains a mixture of different grades. It
is often useful to isolate parts of different grades. For this we use the notation
h�i� to indicate that part of � that has grade �� Thus, h�i0 is the scalar part
of �� h�i1 is the vector part, and h�i2�1 is the sum of the bivector and vector
parts. Evidently

� =
�X

�=0

h�i� �

The exterior product of � vectors v1�v2� � � � �v�� is the �-grade part of the
product:

v1 ∧ v2 ∧ · · · ∧ v� ≡ hv1v2 · · ·v�i� �

It represents the �-volume contained in the polygon with parallel edges given by
the vector factors v1�v2� � � � �v�� and it vanishes unless all � vectors are linearly
independent. In APS, in addition to scalars, vectors, and bivectors, there are
also trivectors, elements of grade 3:

u ∧ v ∧w ≡ huvwi3
=

X
��


��	�

 he�e�e
i3

=
X
��


*��
�
�	�

e1e2e3

= e� det

 �1 	1 
1

�2 	2 
2

�3 	3 
3

 � (7)

where we noted that in 3-dimensional space, the 3-vectors he�e�e
i3 are related
to the volume element e1e2e3 = e� by the Levi-Civita symbol *��
 :

he�e�e
i3 = *��
e1e2e3 � (8)
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Exercise 37 Verify the relation (8) for several values of �� �� +�

Note the appearance of the determinant in expression (7), as in a previous
component form (3) of the bivector. It ensures that the wedge product vanishes
if the vector factors are linearly dependent.
While the component expressions can be useful for comparing results with

other work, the component-free versions u ∧ v ∧w ≡ huvwi3 are simpler and
more efficient to work with. The factor uv can be split into scalar (grade-0)
and bivector (grade-2) parts

uv = huvi0 + huvi2 �

but huvi0w is a (grade-1) vector, so that only the bivector piece contributes to
the trivector huvwi3 � Thus,

huvwi3 = hhuvi2wi3 �

Now split w into components coplanar with huvi2 and orthogonal to it:
w = w4 +w⊥�

where w4 and w⊥ are the parts that anticommute and commute with huvi2,
respectively. The coplanar part w4 is linearly dependent on u and v and
therefore does not contribute to the trivector, whereas the part w⊥ orthogonal
to u and v does. We are left with

huvwi3 = hhuvi2wi3=
1

2
(huvi2w+w huvi2)

= hhuvi2wi= �

It follows that the vector part of the product huvi2w is

hhuvi2wi1 = huvi2w− hhuvi2wi3 =
1

2
(huvi2w−w huvi2)

= hhuvi2wi< �

A couple of important results follow easily.

Theorem 1 hhuvi2wi< = u (v ·w)− v (u ·w) �
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Proof. Expand hhuvi2wi< = 1
2 (huvi2w−w huvi2) � add and subtract term

uwv and vwu� and collect:

hhuvi2wi< =
1

4
[(uv− vu)w−w (uv− vu)]

=
1

4
[uvw+ uwv− vuw− vwu−wuv − uwv+wvu+ vwu]

=
1

2
[u (v ·w)−v (u ·w)− (w · u)v+(w · v)u]

= u (v ·w)− v (u ·w) �

Note that the vector hhuvi2wi1 lies in the plane of huvi2 and is orthogonal to
w� It corresponds to the contraction of a bivector with a vector and is sometimes
written

hhuvi2wi1 = (u ∧ v) ·w�

where the parenthesis is often dropped with the understanding that wedge prod-
ucts are evaluated before dot product. It lies in the intersection of the plane of
huvi2 with the hypersurface dual to w�
Since a vector v orthogonal to the space spanned by the vectors comprising

a �-vector K commutes with K if � is even and anticommutes with it if � is
odd, we can generalize the result for the trivector to

Theorem 2 The (� + 1)-vector hKvi�+1 is given in terms of the �-vector K
as

hKvi�+1 =
1

2

³
Kv+(−)� vK

´
�

Corollary 3 hKvi�−1 = 1
2

³
Kv− (−)� vK

´
�

4.1 Duals

In the algebra of an �-dimensional space, the number of independent �-grade
multivectors is the same as the number of (�− �)-grade elements. Thus, both
the vectors (grade 1 elements) and the pseudovectors (grade � − 1 elements)
occupy linear spaces of � dimensions. We can therefore establish a one-to-one
mapping between such elements. We define the Clifford dual ∗� of an element
� by

∗� ≡ �e−1� �

The dual of a dual is e−2� = ±1 times the original element. If � is a �-vector,
each term in a �-vector basis expansion of � will cancel � of the basis vector
factors in e� � leaving ∗� = �e−1� as an (�− �)-vector. Furthermore, any simple
element and its dual are fully orthogonal in the following sense: a simple �-
vector is a single product of � independent vectors that span a �-dimensional
subspace; every vector in that subspace is orthogonal to vectors whose products
comprise the (�− �)-vector ∗� � The dual of a scalar is a volume element, known
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as a pseudoscalar ; the dual of a vector is the hypersurface orthogonal to that
vector, known as a pseudovector ; and so on.
In APS, the dual to a bivector is the vector normal to the plane of the

bivector. Thus, e� = e1e2e3 and e−1� = e3e2e1 = −e� and for example
∗ (e1e2) = e1e2e3e2e1 = e3 �

We recognize that the dual of a bivector in APS is the cross product :

∗ (u ∧ v) = u× v �

and with this we can understand the relation between the cross product u× v
and the plane of u and v� The volume element in physical space squares to
−1 and commutes with all vectors and hence all elements. It can therefore be
associated with the unit imaginary :

e� = e1e2e3 = �

and thus ∗ (u ∧ v) = (u ∧ v) �� so that
u ∧ v = �u× v �

However, whereas the cross product is defined only in three dimensions and is
nonassociative as well as noncommutative, the exterior wedge product is defined
in spaces of any dimension and is associative. It also emphasizes the essential
properties of the plane and is an operator on vectors that generates rotations.

Remark 4 APS thus automatically incorporates complex numbers as its center
(commuting part). The unit imaginary has geometric meaning in the algebra: it
is the unit volume element and enters in the dual relationship. This helps make
sense of some of the many complex numbers that appear in real physics. The
bivector, for example, is a pseudovector, the dual to the normal vector:

e1e2 = e1e2e3e3 = �e3 �

Exercise 38 Show by calculation of some explicit values that the Levi-Civita
symbol is the dual to the volume element he�e�e
i3 in APS:

*��
 =
∗ he�e�e
i3 = he�e�e
i3 e−1� �

This definition is easily extended to higher dimensions.
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We can use duals to express rotors in physical space in terms of the axis of
rotation. For example

" = exp (e2e1��2) = exp (−�e3��2)

is the rotor for a rotation v→ "v"−1 by � about the e3 axis in physical space.

Exercise 39 Express the bivector rotation rate Ω = −�ω as the dual of a vector
ω in physical space. Show that hΩri< = ω × r�

Exercise 40 Show that in physical space the theorem hhuvi2wi< = u (v ·w)−
v (u ·w) is equivalent to (u× v)×w = u ·w v− v ·w u �

Exercise 41 Rewrite the transformation (6) from the rotating frame to the
inertial lab frame in terms of ω = �Ω�

The wedge product of a �-vector J with a �-vector K is the (� + �)-vector

J ∧K = hJKi�+�
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Its dual is the (�− � − �)-vector

hJKi�+� e
−1
� =

­
JKe−1�

®
�−�−� = hJ ∗Ki�−�−� �

where ∗K =Ke−1� is the dual of K and we have assumed � ≥ � + �� The
grades are specified here, but more generally we can write the wedge (“exterior”)
theorem

Theorem 4 The dual of J ∧K is the contraction

∗ (J ∧K) = J ·∗K �

Corollary 5 The dual of a contraction is the wedge with a dual, and if � ≥ ��

∗ (J ·K) = J ∧ ∗K�

This provides a way of replacing contractions with wedge products (or vice
versa).

Exercise 42 The area of the parallelogram with sides v�w is the magnitude of
the wedge product

v ∧w = 1

2
(vw−wv) �

Insert 1 = −e212 � where e12 = e1e2 is the unit bivector of the plane containing
v and w� and show

v ∧w = hve12wi� e12 �

Explain how this is a special case of the theorem immediately above.

In APS, the volume of the parallelepiped with sides a�b� c� is the dual of the
trivector

a ∧ b ∧ c = habci3 = habci=
= hhabi2 ci= = h� ∗ habi2 ci= = � h(a× b) ci<
= � (a× b) · c

where � = e1e2e3 = e� is the unit trivector of the algebra.
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4.2 Reciprocal Basis

Except for their normalization, reciprocal basis vectors are duals to hyperplanes
formed by wedging all but one of the basis vectors. The reciprocal basis is
important when the basis is not orthogonal and not necessarily normalized, as
in the study of crystalline solids. Thus, if we form a basis {a1�a2�a3} from three
non-coplanar vectors a1�a2�a3� in APS, the reciprocal vector to a1 is

a1 ≡
∗ (a2 ∧ a3)

∗ (a1 ∧ a2 ∧ a3) =
a2 ∧ a3

a1 ∧ a2 ∧ a3 =
a2 × a3

a1 · (a2 × a3) �

where we noted that ∗ (a1 ∧ a2 ∧ a3) is a real scalar, so that

a1 · a1 =
a1 ·∗ (a2 ∧ a3)
∗ (a1 ∧ a2 ∧ a3) =

∗ (a1 ∧ a2 ∧ a3)
∗ (a1 ∧ a2 ∧ a3) = 1

a2 · a1 =
a2 ·∗ (a2 ∧ a3)
∗ (a1 ∧ a2 ∧ a3) =

∗ (a2 ∧ a2 ∧ a3)
∗ (a1 ∧ a2 ∧ a3) = 0 = a3 · a

1 �

We can think of the reciprocal vectors as 1-forms, that is linear operators on
vectors whose operation is defined by

a� (a�) = a� · a� = 
�� �

5 Paravectors and Relativity

The space of scalars, the space of vectors, and the space of bivectors, are all
linear subspaces of the full 2�-dimensional space of the algebra. Direct sums of
the subspaces are also linear subspaces of the algebra. The most important is the
direct sum of the scalar and the vector subspaces. It is an (�+ 1)-dimensional
linear space known as paravector space. [In the algebra of physical space (��3),
every element reduced to a complex paravector.]
Elements of paravector space have the form � = �0 + p = h�i0 + h�i1 � and

the algebra ��� also includes their exterior products:

paravector space = h���i1�0 � (�+ 1) -dim

biparavector space = h���i2�1 �

µ
�+ 1

2

¶
-dim

k-paravector space = h���i���−1 �

µ
�+ 1

�

¶
-dim .

In general, grade-0 paravectors are scalars in h���i0 � (�+ 1)-grade paravectors
are volume elements (pseudoscalars) in h���i� � and the linear space of �-grade
multiparavectors is h���i���−1 ≡ h���i� ⊕ h���i�−1 � � = 1� 2� � � � � ��
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5.1 Conjugations

We need two conjugations (anti-automorphisms) and their combination. For
any paravector � = h�i1�0 �

Clifford (bar) conjugation �̄ = �0 − p� �� = �̄�̄

reversal (dagger) conjugation �† = �� (��)† = �†�†

grade automorphism �̄† = �̄� (��)† = (��)† = �̄†�̄†�

The orthonormal basis vectors of a Euclidean space can all be represented by
hermitian matrices, and reversal is then the same as hermitian conjugation.
Recognizing this possibility, we adopt the dagger notation for reversal in ���.
The conjugations can be used to split elements in various ways:

� =
�+ �̄

2
+

�− �̄

2
= h�i� + h�i� = scalarlike + vectorlike

=
�+ �†

2
+

�− �†

2
= h�i< + h�i= = real + imaginary

=
�+ �̄†

2
+

�− �̄†

2
= h�i+ + h�i− = even + odd.

These relations offer simple ways to isolate different vector and paravector
grades. In particular, for � = 3� (here · · · stands for any expression)

h· · · i� = h· · · i0�3 h· · · i� = h· · · i1�2
h· · · i< = h· · · i0�1 h· · · i= = h· · · i2�3
h· · · i+ = h· · · i0�2 h· · · i− = h· · · i1�3 �

Exercise 43 Verify that the splits can be combined to extract individual vector
grades as follows:

h· · · i0 = h· · · i<� = h· · · i<+ = h· · · i�+
h· · · i1 = h· · · i<�

h· · · i2 = h· · · i=�

h· · · i3 = h· · · i=� �

32



Example 3 Let B be any bivector.
B is even, imaginary, and vectorlike.
B2 is even, real, and scalarlike.
Any analytic function , (B) is even and , (−B) = ,

¡
B̄
¢
= ,

¡
B†
¢

Spatial rotors " (B) = exp (B�2) are even and unitary: "† (B) = "−1 (B) =
" (−B)

We can use either grade numbers or conjugation symmetries to split an ele-
ment into parts. The grade numbers emphasize the algebraic structure whereas
the conjugation symmetries indicate an operational procedure to compute the
part.

5.2 Paravector basis and metric

If {e1� e2� · · · � e�} is an orthonormal basis of the original Euclidean space, so
that

he�e�i0 =
1

2
(e�e� + e�e�) = 
�� �

the proper basis of paravector space is {e0� e1�e2� · · · � e�} � where we identify
e0 ≡ 1 for convenience in expanding paravectors � = ��e�� - = 0� 1� · · · � � in
the basis. The metric of paravector space is determined by the quadratic form.
We need a product of a paravector � with itself or a conjugate that is scalar
valued. It is easy to see that �2 generally has vector parts, but ��̄ = h��̄i0 = �̄�
is a scalar. Therefore it is adopted as the quadratic form (“square length”):

. (�) = ��̄�

By “polarization” �→ �+ � we find the inner product

h�� �i = h��̄i0 =
1

2
(��̄ + ��̄)

= ���� he�ē�i0 ≡ ����/�� �

Exercise 44 Show that the inner product h��̄i0 = 1
2 [. (�+ �)−. (�)−. (�)] �
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Exercise 45 Find the values of /�� = he�ē�i0 �

We recognize the matrix¡
/��
¢
= diag (1�−1�−1� · · · �−1)

as the natural metric of the paravector space. It has the form of the Minkowski
metric. If h��̄i0 = 0� then the paravectors � and � are orthogonal. For any
element �� ��̄ = ��̄ = h��̄i� � In the standard matrix rep of ��3�

��̄ ' det� �

If ��̄ = 1� � is unimodular.
The inverse of an element � can be written

�−1 =
�̄

��̄
�

but this doesn’t exist if ��̄ = 0� The existence of nonzero elements of zero
length means that geometric algebra, unlike the algebras of reals, complexes, and
quaternions, is generally not a division algebra. This may seem an annoyance
at first, but it is the basis for powerful projector techniques, as we demonstrate
below.

Exercise 46 Demonstrate that the paravector 1 + e1 has no inverse and is
orthogonal to itself.

5.3 Spacetime as paravector space

The paravectors of physical space provide a covariant model of spacetime. Take
� = 3 and use SI units. Spacetime vectors are represented by paravectors whose
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frame-dependent split into scalar and vector parts reflects the observer’s ability
to distinguish time and space components. Thus, the dimensionless proper
velocity is

� =
#�

#0
= � (1 + v��) = ��e� �

where v is the usual coordinate velocity vector, we use the summation conven-
tion for repeated indices, and for timelike displacements #�� the dimensionless
proper time is the Lorentz scalar related by

#02 = #�#�̄ = /��#�
�#�� �

Similarly,

� = ��� = 1��+ p : paramomentum

� = ��e� = 2�+ j : current density

3 = 3�e� = ���+A : paravector potential

4 = 4�e�/
�� = �−14� −∇ : gradient operator�

Biparavectors represent oriented planes in spacetime, for example

F = �
­
43̄
®
1�2
=
1

2
5�� he�ē�i1�2 = E+ ��B : electromagnetic field

he�ē�i1�2 = − he� ē�i1�2 : basis biparavectors→ Lorentz rotations�

Thus, the electromagnetic field F is associated with the usual tensor components
5�� � but we don’t need any tensor to express it. It is a covariant plane in
spacetime which for the observer splits naturally into frame-dependent parts

F = Fe0e0 = hFe0i1�0 e0 + hFe0i3�2 e0
whose timelike component is the electric field

E = hFe0i1�0 e0 = hFi1
and whose spacelike part gives the magnetic field

��B = hFe0i3�2 e0 = hFi2 �

In fact the usual magnetic field (times �) �B is the vector dual to the spatial
plane hFi2 or equivalently to the spacetime hypersurface hFe0i3�2 �
We distinguish simple fields, which are single spacetime planes from com-

pound ones, which occupy two orthogonal (and hence commuting) planes. How
do we tell them apart? All we need to do is take the square of the field. The
square of any simple field is a real scalar, whereas the square of a compound field
contains a volume element, that is a pseudoscalar, represented in the paravector
model as an imaginary scalar.
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The biparavector h��̄i2�1 = 1
2 (��̄ − ��̄) represents a spacetime plane contain-

ing paravectors � and �� Its square

h��̄i22�1 =
1

4
(��̄ − ��̄)2 =

1

4
(��̄ + ��̄)2 − 1

2
(��̄��̄+ ��̄��̄)

= h��̄i20 − ��̄��̄

is seen to be a real scalar. The square of F = E+ ��B is

F2 = E2 − �2B2 + 2��E ·B
which means that F is evidently simple if and only if E ·B = 0�
A null field has F2 = 0 and can be written F =

³
1 + k̂

´
E � where k̂E = ��B�

Exercise 47 Show that any null field F =
³
1 + k̂

´
E obeys k̂F = F = −Fk̂ �

5.4 Lorentz transformations

Physical (restricted) Lorentz transformations are rotations in paravector space.
They take the form of spin transformations

� → 6�6†� odd multiparavector grade
F → 6F6̄ � even multiparavector grade�

where the Lorentz rotors 6 are unimodular (66̄ = 1) and have the form

6 = exp (W�2) ∈ %6 (2�C)

W =
1

2
7�� he�ē�i1�2 �

Every 6 can be factored into a boost 8 = 8† (a real factor) and a spatial
rotation (a unitary factor) " = "̄† : 6 = 8"�
For any paravectors �� �� the square lengths ��̄� ��̄ are Lorentz invariant, as

is the scalar product h��̄i� � A paravector �� can be timelike (��̄ � 0), spacelike
(��̄ 9 0), or lightlike (null, ��̄ = 0) and this is an invariant property. Null par-
avectors are orthogonal to themselves. Similarly F2 is also Lorentz invariant and
simple fields can be classified as predominantly electric (F2 � 0), predominantly
magnetic (F2 9 0), or null (F2 = 0).
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The position coordinate � of a particle at rest changes only by its time, the
proper time 0 :

#�rest = #0

Let’s transform this to the lab, in which the particle moves with proper velocity
� = #��#0 :

#� = 6#�rest6
† = 66†#0 = �#0

= �#�+ #x = #� (�+ v)

Thus,

66† = 82 = � =
#�

#0
(�+ v) �

Now 66† = 6e06† = � is just the Lorentz rotation of the unit basis paravector
in the time direction, and since its length is invariant,

� �̄ = 1 = �2
¡
1− v2��2¢

where � = �#��#0 is the time-dilation factor.

Example 4 Consider the transformation of a paravector � = ��e� in a system
that is boosted from rest to a velocity v = 	e3 :

�→ 6�6† = 8�8 = ��u�

where 8 = exp (
e3ē0�2) = �1�2 represents a rotation in the e3ē0 paravector
plane and u� = 8e�8 is the boosted proper basis paravector. Evidently

u0 = 8e08 = 82e0 = �e0 = �
³
e0 +

	

�
e3
´

u1 = e1 � u2 = e2

u3 = 8e38 = �e3 = �
³
e3 +

	

�
e0
´

with � =
³
1− �2

�2

´−1�2
�

As in the case of spatial rotations, if we put 6�6† = �0 = �0�e� � we can easily
find

�0� = �� hu�ē
�i�

and thus the usual 4×4 matrix relating the components of � before and after the
boost, but we don’t really need it. The relations for u� are useful for drawing
spacetime diagrams. Thus, if 	 = 0�6 �� then � = 1�25 and

u0 = (5e0 + 3e3) �4

u3 = (5e3 + 3e0) �4 �

We can take this further and look at planes in spacetime, as shown in the figure.
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e0

u0

u3

e3

e1,2 = u1,2

Figure 8: Spacetime diagram showing the boost to v = 0�6 �e3 .

Exercise 48 Show that the biparavectors e3ē0 and e1ē2 are invariant under
any boost 8 along e3.

Exercise 49 Let system B have proper velocity ��� with respect to A, and let
system C have proper velocity ��� as seen by an observer in B. Show that the
proper velocity of C as viewed by A is

��� = �
1�2
������

1�2
��

and that this reduces to the product ��� = ������ when the spatial velocities
are collinear. Writing each proper velocity in the form � = � (1 + v) � show that
in the collinear case

v�� =
h���i�
h���i�

=
v�� + v��

1 + v��·v��
�
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Example 5 Consider a boost of the photon wave paravector

� =
�

�

³
1 + k̂

´
→ �0 = 8�8 = �

³�
�
+ kk

´
+ k⊥

with kk = k · v̂ v̂ = k− k⊥ and � = � (1 + v��) � This describes what happens
to the photon momentum when the light source is boosted. Evidently k⊥ is
unchanged, but there is a Doppler shift and a change in kk :

�0 =
D
�
³
� + �kk

´E
�
= ��

³
1 + k̂ · v��

´
k0 · v̂ =

D
�v̂
³�
�
+ kk

´E
�
= �

�

�

³	
�
+ k̂ · v̂

´
=

�0

�
cos �0�

Thus, the photons are thrown forward:

cos �0 =
	 + � cos �

�+ 	 cos �
� (9)

This is the “headlight” effect:

Exercise 50 Solve Eq. (9) for cos � and show that the result is the same as in
Eq. (9) except that 	 is replaced by −	 and � and �0 are interchanged.
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v = 0

v = .95 c ����

Figure 9: Headlight effect in boosted light source.

Exercise 51 Show that at high velocities, the radiation from the boosted source
is concentrated in the cone of angle �−1 about the forward direction.

Remark 5 D. Hestenes’ treatment of relativity in his book New Foundations
for Classical Mechanics, 2/e (Kluwer Academic, 1999), c.9, is equivalent to the
paravector model of relativity presented here. In his earlier book Space-Time
Algebra (Gordon and Breach, 1966), he instead uses the space-time algebra
(STA), that is the real algebra ��1�3� whose even part is isomorphic to APS.

6 Conclusions

This workbook has given a bare introduction to the application of GA, and in
particular the APS dialect of GA, to problems in physics. A number of problems
have been worked out in detail with the hope of providing a real sense of its
application in the contemporary physics curriculum. I hope the following points
have been demonstrated:

• The basis of GA is very simple. It is an algebra of vectors that naturally

40



unifies vector products with complex analysis and extends these techniques
to higher dimensions.

• GA replaces much of the matrix and tensor methods in the physics cur-
riculum with an algebra that emphasizes geometric concepts.

• In GA, and in particular in the APS dialect, relativistic treatments are al-
most as easy to formulate, calculate, and interpret as Galilean/Newtonian
ones. The conceptual and computational importance of covariant relativis-
tic symmetries makes it advantageous to use relativity at early stages in
courses on mechanics, electromagnetism, and quantum theory. GA makes
this possible.

• GA makes the classical/quantum interface more transparent. Rotors are
amplitudes like quantum wave functions, and spinors and projectors pro-
vide powerful tools in the classical realm. The GA approach integrates
quantum theory smoothly into the rest of the physics curriculum.

• GA is beautiful, powerful, and fun! Its use can make the undergraduate
physics curriculum more efficient and more stimulating.

There is a wealth of information on GA and STA in books and journal pub-
lications by Hestenes and co-workers. See http://modelingnts.la.asu.edu for a
listing and downloadable copies of many articles. More information on the APS
approach can be found at the website http://www.uwindsor.ca/baylis-research/
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